Publications by authors named "Anthony D Vaudo"

Article Synopsis
  • Ecological disturbances can either boost or lower biodiversity, and beekeeping is a type of disturbance when honey bees are introduced to an area.
  • A study in the Qinghai-Tibet Plateau found that beekeeping reduced native bee populations mainly due to competition for flower resources, but over time, areas without apiaries saw native bee numbers recover.
  • The research highlights that while a moderate number of honey bee colonies might not lead to permanent negative effects on native bees, it can still significantly change local bee communities in the long run.
View Article and Find Full Text PDF

As bees' main source of protein and lipids, pollen is critical for their development, reproduction, and health. Plant species vary considerably in the macronutrient content of their pollen, and research in bee model systems has established that this variation both modulates performance and guides floral choice. Yet, how variation in pollen chemistry shapes interactions between plants and bees in natural communities is an open question, essential for both understanding the nutritional dynamics of plant-pollinator mutualisms and informing their conservation.

View Article and Find Full Text PDF

Annual plants allocate soil nutrients to floral display and pollinator rewards to ensure pollination success in a single season. Nitrogen and phosphorus are critical soil nutrients whose levels are altered by intensive land use that may affect plants' fitness via pollinator attractiveness through floral display and rewards. In a controlled greenhouse study, we studied in cucumbers (Cucumis sativus) how changes in soil nitrogen and phosphorus influence floral traits, including nectar and pollen reward composition.

View Article and Find Full Text PDF

Pollinator foraging decisions shape microbial dispersal, and microbes change floral phenotypes in ways perceivable by pollinators. Yet, the role microbes play in the cognitive ecology of pollination is relatively unexplored. Reviewing recent literature on floral microbial ecology and pollinator behavior, we advocate for further integration between these two fields.

View Article and Find Full Text PDF

Studying the pollen preferences of introduced bees allows us to investigate how species use host-plants when establishing in new environments. is a solitary bee introduced into North America from East Asia for pollination of Rosaceae crops such as apples and cherries. We investigated whether (i) more frequently collected pollen from host-plant species they coevolved with from their geographic origin, or (ii) prefer host-plant species of specific plant taxa independent of origin.

View Article and Find Full Text PDF

Pollinator nutritional ecology provides insights into plant-pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness.

View Article and Find Full Text PDF

Climate warming is likely to change the ways in which plants interact with their insect mutualists, for example through changes in phytochemistry. In particular, this may have implications for the ways in which we manage noxious weeds, which may spread more quickly if they experience stronger mutualistic interactions. We grew the invasive nodding thistle, , in two experimental treatments in the field: either passively warmed with open top chambers or at ambient temperatures.

View Article and Find Full Text PDF

Non-native plant species reliant on insect pollination must attract novel pollinators in their introduced habitat to reproduce. Indeed, pollination services provided by resident floral visitors may contribute to the spread of non-native species, which may then affect the pollination services received by native plants. To determine the mechanisms by which an invasive thistle attracts pollinators in its introduced range, and whether its presence changes the pollinator visitation to native plant species, we compared bee visitation to native plants in the presence or absence of the invader.

View Article and Find Full Text PDF

Foraging behavior is a critical adaptation by insects to obtain appropriate nutrients from the environment for development and fitness. Bumble bees ( spp.) form annual colonies which must rapidly increase their worker populations to support rearing reproductive individuals before the end of the season.

View Article and Find Full Text PDF

Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A.

View Article and Find Full Text PDF

To fuel their activities and rear their offspring, foraging bees must obtain a sufficient quality and quantity of nutritional resources from a diverse plant community. Pollen is the primary source of proteins and lipids for bees, and the concentrations of these nutrients in pollen can vary widely among host-plant species. Therefore we hypothesized that foraging decisions of bumble bees are driven by both the protein and lipid content of pollen.

View Article and Find Full Text PDF

Bee-population declines are linked to nutritional shortages caused by land-use intensification, which reduces diversity and abundance of host-plant species. Bees require nectar and pollen floral resources that provide necessary carbohydrates, proteins, lipids, and micronutrients for survival, reproduction, and resilience to stress. However, nectar and pollen nutritional quality varies widely among host-plant species, which in turn influences how bees forage to obtain their nutritionally appropriate diets.

View Article and Find Full Text PDF

Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood.

View Article and Find Full Text PDF