Publications by authors named "Anouk Emadali"

Background: MYC-driven lymphomas are a subset of B-cell lymphomas characterized by genetic alterations that dysregulate the expression of the MYC oncogene. When overexpressed, typically through chromosomal translocations, amplifications, or other mechanisms, MYC can drive uncontrolled cell growth and contribute to cancer development. MYC-driven lymphomas are described as aggressive entities which require intensive treatment approaches and can be associated with poor prognosis.

View Article and Find Full Text PDF

Immunotherapies have significantly improved the prognosis of patients with advanced hepatocellular carcinoma (HCC), although more than 70% of patients still do not respond to this first-line treatment. Many new combination strategies are currently being explored, which drastically increases the need for preclinical models that would allow large-scale testing of new immunotherapies and their combinations. We developed several in ovo (in the egg) human liver cancer models, based on human tumor xenografts of different liver cancer cell lines on the chicken embryo's chorioallantoic membrane.

View Article and Find Full Text PDF
Article Synopsis
  • - The phase II trial assessed the effectiveness of the RiBVD treatment (rituximab, bendamustine, velcade, and dexamethasone) in patients over 65 with mantle cell lymphoma (MCL), which resulted in a median progression-free survival of 79 months and overall survival of 111 months.
  • - TP53 mutation status and albumin levels were identified as significant prognostic factors, with TP53 mutations linked to a higher risk of shorter progression-free survival and overall survival in the analyzed patient population.
  • - A scoring system combining TP53 mutation status and albumin levels allowed differentiation of patient outcomes, indicating varying survival rates based on the presence of these factors, thus enhancing prognostic assessments
View Article and Find Full Text PDF

The pharmaceutical industry has a pervasive need for chiral specific molecules with optimal affinity for their biological targets. However, the mass production of such compounds is currently limited by conventional chemical routes, that are costly and have an environmental impact. Here, we propose an easy access to obtain new tetrahydroquinolines, a motif found in many bioactive compounds, that is rapid and cost effective.

View Article and Find Full Text PDF
Article Synopsis
  • R-CHOP immuno-chemotherapy is effective for treating diffuse large B-cell lymphoma (DLBCL), but a significant percentage (30-40%) of patients either don't respond or relapse.
  • Researchers have identified the protein CYCLON as a key factor linked to disease progression and treatment resistance in DLBCL, establishing it as a potential predictor of poor outcomes.
  • The study also highlights the interaction between CYCLON and NPM1, suggesting that their co-expression and specific locations within the cell could provide insights for developing more tailored treatment strategies for high-risk DLBCL patients.
View Article and Find Full Text PDF
Article Synopsis
  • Diffuse large B-cell lymphoma (DLBCL) is a diverse cancer type treated primarily with the R-CHOP immuno-chemotherapy regimen, but about 30% of patients do not respond or experience a relapse.
  • This study examined the expression of biomarkers like c-MYC, p53, and others in a cohort of 94 DLBCL patients to understand their correlation with patient outcomes and tumor characteristics.
  • Results showed that p53 overexpression was linked to poorer outcomes, while the “starry-sky” tissue pattern indicated better survival in certain high-risk DLBCL patients, suggesting that these biomarkers can help inform prognosis and treatment strategies.
View Article and Find Full Text PDF

Follicular lymphomas (FLs) with MYC rearrangements (MYC-R) and extra copies of MYC (MYC-EC) are rare and the prognosis impact is uncertain. We conducted a retrospective study including 321 FL patients, among whom 259 (81%) had no 8q24 alterations and 62 (19%) were assigned to 8qAlt. Forty-five cases were classified as MYC-EC and six as MYC-R.

View Article and Find Full Text PDF
Article Synopsis
  • Multicystic renal dysplasia is a birth defect of the kidneys characterized by cyst formation due to abnormal kidney development and immature cells surrounding the cysts.
  • The PI3K-AKT-mTOR signaling pathway is crucial for regulating cell functions like growth and survival, and its activation can lead to tumor growth in various cancers.
  • This study examined kidney samples from fetuses and individuals with multicystic dysplastic kidneys, finding that the PI3K-AKT-mTOR pathway is actively involved in cyst formation, indicating its significant role in this congenital condition.
View Article and Find Full Text PDF

Background: While lung adenocarcinoma patients can somewhat benefit from anti-angiogenic therapies, patients with squamous cell lung carcinoma (SQLC) cannot. The reasons for this discrepancy remain largely unknown. Soluble VEGF receptor-1, namely sVEGFR1-i13, is a truncated splice variant of the cell membrane-spanning VEGFR1 that has no transmembrane or tyrosine kinase domain.

View Article and Find Full Text PDF

NFκB (Nuclear Factor--light-chain-enhancer of activated B cells) signaling elicits global transcriptional changes by activating cognate promoters and through genome-wide remodeling of cognate regulatory elements called "super enhancers". BET (Bromodomain and Extra-Terminal domain) protein family inhibitor studies have implicated BET protein member BRD4 and possibly other BET proteins in NFκB-dependent promoter and super-enhancer modulation. Members of the BET protein family are known to bind acetylated chromatin to facilitate access by transcriptional regulators to chromatin, as well as to assist the activity of transcription elongation complexes via CDK9/pTEFb.

View Article and Find Full Text PDF

Advances in high-throughput proteomics have led to a rapid increase in the number, size, and complexity of the associated data sets. Managing and extracting reliable information from such large series of data sets require the use of dedicated software organized in a consistent pipeline to reduce, validate, exploit, and ultimately export data. The compilation of multiple mass-spectrometry-based identification and quantification results obtained in the context of a large-scale project represents a real challenge for developers of bioinformatics solutions.

View Article and Find Full Text PDF

Invadosomes are acto-adhesive structures able to both bind the extracellular matrix (ECM) and digest it. Paxillin family members-paxillin, Hic-5, and leupaxin-are implicated in mechanosensing and turnover of adhesion sites, but the contribution of each paxillin family protein to invadosome activities is unclear. We use genetic approaches to show that paxillin and Hic-5 have both redundant and distinctive functions in invadosome formation.

View Article and Find Full Text PDF

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive leukemia for which knowledge on disease mechanisms and effective therapies are currently lacking. Only a handful of recurring genetic mutations have been identified and none is specific to BPDCN. In this study, through molecular cloning in an index case that presented a balanced t(3;5)(q21;q31) and molecular cytogenetic analyses in a further 46 cases, we identify monoallelic deletion of NR3C1 (5q31), encoding the glucocorticoid receptor (GCR), in 13 of 47 (28%) BPDCN patients.

View Article and Find Full Text PDF

Although the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome.

View Article and Find Full Text PDF

Abnormal gene expression in cancer represents an under-explored source of cancer markers and therapeutic targets. In order to identify gene expression signatures associated with survival in acute lymphoblastic leukemia (ALL), a strategy was designed to search for aberrant gene activity, which consists of applying several filters to transcriptomic datasets from two pediatric ALL studies. Six genes whose expression in leukemic blasts was associated with prognosis were identified:three genes predicting poor prognosis (AK022211, FASTKD1 and STARD4) and three genes associated with a favorable outcome (CAMSAP1, PCGF6 and SH3RF3).

View Article and Find Full Text PDF

Immuno-chemotherapy elicit high response rates in B-cell non-Hodgkin lymphoma but heterogeneity in response duration is observed, with some patients achieving cure and others showing refractory disease or relapse. Using a transcriptome-powered targeted proteomics screen, we discovered a gene regulatory circuit involving the nuclear factor CYCLON which characterizes aggressive disease and resistance to the anti-CD20 monoclonal antibody, Rituximab, in high-risk B-cell lymphoma. CYCLON knockdown was found to inhibit the aggressivity of MYC-overexpressing tumours in mice and to modulate gene expression programs of biological relevance to lymphoma.

View Article and Find Full Text PDF

Germline cell differentiation is controlled by a specific set of genes whose expression is tightly locked into the repressed state in somatic cells. Large-scale epigenome alterations, now evidenced in nearly all cancers, lead to aberrant activation of these normally silenced genes, as attested by the many reports describing the expression of testis-specific factors, known as cancer-testis genes, in various cancer cells. Here, based on the literature, we argue that off-context activity of some of the testis-specific epigenome regulators can reprogram the somatic cell epigenome toward a malignant state by favoring self-renewal and sustaining cell proliferation under stressful conditions, thereby constituting a major oncogenic mechanism.

View Article and Find Full Text PDF

Mass spectrometry-based quantitative proteomics strategies are ideally adapted to the detection of global protein changes between different biological samples. Among these, SILAC (stable isotope labelling by amino acids in cell culture) has demonstrated a great potential. This method is extremely accurate and relatively easy to apply for the quantification of proteins extracted from cultured cells.

View Article and Find Full Text PDF

The striatum, a major component of the brain basal nuclei, is central for planning and executing voluntary movements and undergoes lesions in neurodegenerative disorders such as Huntington disease. To perform highly integrated tasks, the striatum relies on a complex network of communication within and between brain regions with a key role devoted to secreted molecules. To characterize the rat striatum secretome, we combined in vivo microdialysis together with proteomics analysis of trypsin digests and peptidomics studies of native fragments.

View Article and Find Full Text PDF

Recent studies suggest a possible link between calcification and ischemia-reperfusion injury following liver transplantation. Histological staining, immunolabeling, and biochemical and electron microscopy analyses were applied to assess the possible mechanism(s) of calcification in liver tissue. Although light microscopy studies did not reveal the presence of large necrotic or apoptotic areas, electron microscopy showed the presence of membrane-bound vacuolar structures in hepatocytes, indicative of cell damage.

View Article and Find Full Text PDF

Background: Ischemia-reperfusion (I/R) causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) represents a major determinant of liver transplantation. IRI-induced graft dysfunction is related to biliary damage, partly due to a loss of bile canaliculi (BC) integrity associated with a dramatic remodeling of actin cytoskeleton. However, the molecular mechanisms associated with these events remain poorly characterized.

View Article and Find Full Text PDF

Injury due to cold ischaemia-reperfusion (IR) represents a major cause of primary graft non-function following human liver transplantation. This major cellular response translates into a dramatic decrease in intracellular ATP concentration during the ischaemic phase, thus sensitizing cells to reperfusion shock. We postulated that IR-induced cellular damage might cause alterations of the secretory pathway, particularly at the level of endoplasmic reticulum (ER) function.

View Article and Find Full Text PDF

Background: The molecular events, following ischemia and reperfusion (I/R) of the liver during transplantation are largely unknown. There is evidence that apoptotic and necrotic events may take place, and occasionally result in primary graft dysfunction. We herein report two cases, where significant I/R injury correlated with the development of liver calcification and primary liver dysfunction.

View Article and Find Full Text PDF