Publications by authors named "Annie David"

HIV remission can be achieved in some people, called post-treatment HIV controllers, after antiretroviral treatment discontinuation. Treatment initiation close to the time of infection was suggested to favor post-treatment control, but the circumstances and mechanisms leading to this outcome remain unclear. Here we evaluate the impact of early (week 4) vs.

View Article and Find Full Text PDF

HIV-1 Gag p24 has long been identified as an informative biomarker of HIV replication, disease progression, and therapeutic efficacy, but the lower sensitivity of immunoassays in comparison to molecular tests and the interference with antibodies in chronic HIV infection limit its application for clinical monitoring. The development of ultrasensitive protein detection technologies may help in overcoming these limitations. Here, we evaluated whether immune complex dissociation combined with ultrasensitive digital enzyme-linked immunosorbent assay (ELISA) single-molecule array (Simoa) technology could be used to quantify p24 in plasma samples from people with HIV-1 infection.

View Article and Find Full Text PDF

Highly efficient CD8 T cells are associated with natural HIV control, but it has remained unclear how these cells are generated and maintained. We have used a macaque model of spontaneous SIVmac251 control to monitor the development of efficient CD8 T cell responses. Our results show that SIV-specific CD8 T cells emerge during primary infection in all animals.

View Article and Find Full Text PDF

Understanding the viral-host cell interface during HIV-1 infection is a prerequisite for the development of innovative antiviral therapies. Here we show that the suppressor of G2 allele of skp1 (SUGT1) is a permissive factor for human immunodeficiency virus (HIV)-1 infection. Expression of SUGT1 increases in infected cells on human brain sections and in permissive host cells.

View Article and Find Full Text PDF

HIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4 T cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of antiapoptotic clone 11 (AAC-11), an antiapoptotic factor upregulated in many cancers, increased with progressive CD4 T cell memory differentiation in association with the expression of cell cycle, activation, and metabolism genes and was correlated with susceptibility to HIV-1 infection.

View Article and Find Full Text PDF

HIV-1 infection of noncycling cells, such as dendritic cells (DCs), is impaired due to limited availability of deoxynucleoside triphosphates (dNTPs), which are needed for HIV-1 reverse transcription. The levels of dNTPs are tightly regulated during the cell cycle and depend on the balance between dNTP biosynthesis and degradation. SAMHD1 potently blocks HIV-1 replication in DCs, although the underlying mechanism is still unclear.

View Article and Find Full Text PDF

The existence of HIV reservoirs in infected individuals under combined antiretroviral therapy (cART) represents a major obstacle toward cure. Viral reservoirs are assessed by quantification of HIV nucleic acids, a method which does not discriminate between infectious and defective viruses, or by viral outgrowth assays, which require large numbers of cells and long-term cultures. Here, we used an ultrasensitive p24 digital assay, which we report to be 1,000-fold more sensitive than classical enzyme-linked immunosorbent assays (ELISAs) in the quantification of HIV-1 Gag p24 production in samples from HIV-infected individuals.

View Article and Find Full Text PDF

Compared with HIV-1, HIV-2 infection is characterized by a larger proportion of slow or nonprogressors. A better understanding of HIV-2 pathogenesis should open new therapeutic avenues to establish control of HIV-1 replication in infected patients. In this study, we studied the production of CD8(+) T cells and their capacity for viral control in HIV-2 controllers from the French ANRS CO5 HIV-2 cohort.

View Article and Find Full Text PDF

HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs.

View Article and Find Full Text PDF

Unlabelled: HIV establishes reservoirs of infected cells that persist despite effective antiretroviral therapy (ART). In most patients, the virus begins to replicate soon after treatment interruption. However, a low frequency of infected cells at the time of treatment interruption has been associated with delayed viral rebound.

View Article and Find Full Text PDF

Background: Durable HIV-1 remission after interruption of combined antiretroviral therapy (ART) has been reported in some adults who started treatment during primary infection; however, whether long-term remission in vertically infected children is possible was unknown. We report a case of a young adult perinatally infected with HIV-1 with viral remission despite long-term treatment interruption.

Methods: The patient was identified in the ANRS EPF-CO10 paediatric cohort among 100 children infected with HIV perinatally who started ART before 6 months of age.

View Article and Find Full Text PDF

Macrophages are a major target cell for HIV-1, and their infection contributes to HIV pathogenesis. We have previously shown that the cyclin-dependent kinase inhibitor p21 inhibits the replication of HIV-1 and other primate lentiviruses in human monocyte-derived macrophages by impairing reverse transcription of the viral genome. In the attempt to understand the p21-mediated restriction mechanisms, we found that p21 impairs HIV-1 and simian immunodeficiency virus (SIV)mac reverse transcription in macrophages by reducing the intracellular deoxyribonucleotide (dNTP) pool to levels below those required for viral cDNA synthesis by a SAM domain and HD domain-containing protein 1 (SAMHD1)-independent pathway.

View Article and Find Full Text PDF

How HIV controllers (HICs) maintain undetectable viremia without therapy is unknown. The strong CD8(+) T-cell HIV suppressive capacity found in many, but not all, HICs may contribute to long-lasting viral control. However, other earlier defense mechanisms may be involved.

View Article and Find Full Text PDF

Our laboratory has previously identified an important intragenic region in the human immunodeficiency virus type 1 (HIV-1) genome, whose complete functional unit is composed of the 5103 fragment, the DNaseI-hypersensitive site HS7 and the 5105 fragment. These fragments (5103 and 5105) both exhibit a phorbol 12-myristate 13-acetate (PMA)-inducible enhancer activity on the herpes simplex virus thymidine kinase promoter. Here, we characterized the three previously identified AP-1 binding sites of fragment 5103 by showing the PMA-inducible in vitro binding and in vivo recruitment of c-Fos, JunB and JunD to this fragment located at the end of the pol gene.

View Article and Find Full Text PDF

Macrophages are cells of the immune system that, with T lymphocytes, are major target for HIV, the pathogen responsible for AIDS. Macrophages play a relevant role in the pathogenesis of the infection, from the entry of the virus through the mucosa to its spreading in body tissues, especially the central nervous system, and contribute to the formation of viral reservoirs. The replication of HIV in macrophages presents similarities but also some differences compared to that in lymphocytes, and requires a number of interactions between viral and host proteins essential for each step of the viral cycle.

View Article and Find Full Text PDF

Macrophages are major targets of human immunodeficiency virus type 1 (HIV-1). We have previously shown that aggregation of activating immunoglobulin G Fc receptors (FcgammaR) by immune complexes inhibits reverse transcript accumulation and integration of HIV-1 and related lentiviruses in monocyte-derived macrophages. Here, we show that FcgammaR-mediated restriction of HIV-1 is not due to enhanced degradation of incoming viral proteins or cDNA and is associated to the induction of the cyclin-dependent kinase inhibitor p21(Cip1/WAF1) (p21).

View Article and Find Full Text PDF

Background: Tripartite motif (TRIM) proteins constitute a family of proteins that share a conserved tripartite architecture. The recent discovery of the anti-HIV activity of TRIM5alpha in primate cells has stimulated much interest in the potential role of TRIM proteins in antiviral activities and innate immunity.

Principal Findings: To test if TRIM genes are up-regulated during antiviral immune responses, we performed a systematic analysis of TRIM gene expression in human primary lymphocytes and monocyte-derived macrophages in response to interferons (IFNs, type I and II) or following FcgammaR-mediated activation of macrophages.

View Article and Find Full Text PDF

The human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) genomes encode several auxiliary proteins that have increasingly shown their importance in the virus-host relationship. One of these proteins, Vpx, is unique to the HIV-2/SIVsm lineage and is critical for viral replication in macrophages. The functional basis for this requirement, as well as the Vpx mode of action, has remained unexplained, and it is all the more enigmatic that HIV type 1 (HIV-1), which has no Vpx counterpart, can infect macrophages.

View Article and Find Full Text PDF

Background: HIV-1 Vpr is a dynamic protein that primarily localizes in the nucleus, but a significant fraction is concentrated at the nuclear envelope (NE), supporting an interaction between Vpr and components of the nuclear pore complex, including the nucleoporin hCG1. In the present study, we have explored the contribution of Vpr accumulation at the NE to the Vpr functions, including G2-arrest and pro-apoptotic activities, and virus replication in primary macrophages.

Results: In order to define the functional role of Vpr localization at the NE, we have characterized a set of single-point Vpr mutants, and selected two new mutants with substitutions within the first alpha-helix of the protein, Vpr-L23F and Vpr-K27M, that failed to associate with hCG1, but were still able to interact with other known relevant host partners of Vpr.

View Article and Find Full Text PDF

We previously reported that the stimulation of monocyte-derived macrophages (MDM) by plate-bound i.v. Igs inhibits HIV-1 replication.

View Article and Find Full Text PDF

We addressed the role of innate immunity in the protection against HIV-1 infection by studying NK cell function in 37 Vietnamese intravascular drug users (IDUs), who appeared to remain HIV-1 uninfected despite many years of high-risk exposure (exposed uninfected, EU), 10 IDUs who underwent seroconversion and 28 unexposed blood donors. Main results were: NK cell lytic activities against both the NK-susceptible K562 cell line and the NK-resistant Daudi cell line were significantly augmented in EU IDUs compared with either controls or seroconverters before or after seroconversion; NK cells producing the cytokines IFN-gamma and TNF-alpha and the beta chemokines CCL3, CCL4, and CCL5 were also increased in the EU IDUs, either after in vitro activation or without stimulation. The finding of an enhanced NK cell function in EU IDUs, especially compared with IDUs who became HIV-1 infected, supports the hypothesis that NK cells contribute to the protection against HIV-1 infection.

View Article and Find Full Text PDF

Objective: To identify mechanisms of resistance to HIV-1 infection in exposed uninfected individuals.

Design: We examined in-vitro cell susceptibility to HIV-1 infection in highly exposed Vietnamese intravascular drug users (IDU) who, despite a history of more than 10 years of drug use and a high prevalence of other blood-borne viral infections, remain apparently HIV uninfected.

Methods: Forty-five exposed uninfected IDU and 50 blood donors were included in the study.

View Article and Find Full Text PDF

Permissiveness of monocytes and macrophages to human immunodeficiency virus (HIV) infection is modulated by various stimuli. In this study we demonstrate that stimulation of primary monocytes and monocyte-derived macrophages (MDM) through the receptors for the Fc portion of immunoglobulin G (IgG) (FcgammaR) inhibits HIV type 1 (HIV-1) replication. Viral p24 production was decreased by 1.

View Article and Find Full Text PDF