Publications by authors named "Anne Gregor"

The dyskerin encoding gene DKC1 plays an important role in telomerase activity and telomere maintenance. Pathogenic variants in DKC1 cause an X-linked multiorgan disease called dyskeratosis congenita (DC), the most severe form of which is Hoyeraal-Hreidarsson syndrome (HHS). HHS due to DKC1 variants has so far only been reported in hemizygous males and is associated with severe neurological impairment and progressive bone marrow failure, often causing lethality in early childhood.

View Article and Find Full Text PDF

Of the around 7,000 known rare diseases worldwide, disease-modifying treatments are available for fewer than 5%, leaving millions of individuals without specialized therapeutic strategies. In recent years, antisense oligonucleotides (ASOs) have shown promise as individualized genetic interventions for rare genetic diseases. However, there is currently no consensus on which disease-causing DNA variants are suitable candidates for this type of genetic therapy.

View Article and Find Full Text PDF

Haploinsufficiency of FBXO11, encoding a ubiquitin ligase complex subunit, is associated with a variable neurodevelopmental disorder. So far, the underlying nervous system-related pathomechanisms are poorly understood, and specific therapies are lacking. Using a combined approach, we established an FBXO11-deficient human stem cell-based neuronal model using CRISPR-Cas9 and a Drosophila model using tissue-specific knockdown techniques.

View Article and Find Full Text PDF

While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB.

View Article and Find Full Text PDF

While mostly de novo truncating variants in SCAF4 were recently identified in 18 individuals with variable neurodevelopmental phenotypes, knowledge on the molecular and clinical spectrum is still limited. We assembled data on 50 novel individuals with SCAF4 variants ascertained via GeneMatcher and personal communication. With detailed evaluation of clinical data, in silico predictions and structural modeling, we further characterized the molecular and clinical spectrum of the autosomal dominant SCAF4-associated neurodevelopmental disorder.

View Article and Find Full Text PDF
Article Synopsis
  • This study identifies a new type of autosomal recessive intellectual disability linked to genetic variants in the GTF3C3 gene, which is essential for proper RNA polymerase III activity.
  • Researchers employed various methods, including exome sequencing and Drosophila models, to analyze the effects of GTF3C3 variants found in twelve affected individuals from seven families.
  • The results showed that the variants lead to significant functional losses in the gene, correlating with symptoms like intellectual disability, motor issues, seizures, and brain structure abnormalities.
View Article and Find Full Text PDF

In this review we describe different model organisms and systems that are commonly used to study syndromic disorders. Different use cases in modeling diseases, underlying pathomechanisms and specific effects of certain variants are elucidated. We also highlight advantages and limitations of different systems.

View Article and Find Full Text PDF

Two Jack-Russell Terrier × Chihuahua mixed-breed littermates with Leigh syndrome were investigated. The dogs presented with progressive ataxia, dystonia, and increased lactate levels. Brain MRI showed characteristic bilateral symmetrical T2 hyperintense lesions, histologically representing encephalomalacia.

View Article and Find Full Text PDF

Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder.

View Article and Find Full Text PDF

Purpose: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability.

Methods: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro.

View Article and Find Full Text PDF

Purpose: LHX2 encodes the LIM homeobox 2 transcription factor (LHX2), which is highly expressed in brain and well conserved across species, but it has not been clearly linked to neurodevelopmental disorders (NDDs) to date.

Methods: Through international collaboration, we identified 19 individuals from 18 families with variable neurodevelopmental phenotypes, carrying a small chromosomal deletion, likely gene-disrupting or missense variants in LHX2. Functional consequences of missense variants were investigated in cellular systems.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research identified FBXO11 gene variants as a cause of a neurodevelopmental disorder (NDD), and analysis of 23 new cases showed a wide range of symptoms, primarily developmental delays and intellectual disability.
  • The study found various mutations, including deletions and missense variants, affecting the FBXO11 protein's structure and function, which often resulted in mislocalization and reduced protein levels.
  • Functional tests indicated that these mutations likely disrupt the normal function of FBXO11, suggesting that haploinsufficiency (having only one functioning copy of the gene) may lead to the observed NDD symptoms.
View Article and Find Full Text PDF

Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing.

View Article and Find Full Text PDF

Pathogenic variants in PHD finger protein 6 (PHF6) cause Borjeson-Forssman-Lehmann syndrome (BFLS), a rare X-linked neurodevelopmental disorder, which manifests variably in both males and females. To investigate the mechanisms behind overlapping but distinct clinical aspects between genders, we assessed the consequences of individual variants with structural modelling and molecular techniques. We found evidence that de novo variants occurring in females are more severe and result in loss of PHF6, while inherited variants identified in males might be hypomorph or have weaker effects on protein stability.

View Article and Find Full Text PDF

Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%-41% of affected individuals harbor bi-allelic mutations in IL36RN, the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO).

View Article and Find Full Text PDF

RNA polymerase II interacts with various other complexes and factors to ensure correct initiation, elongation, and termination of mRNA transcription. One of these proteins is SR-related CTD-associated factor 4 (SCAF4), which is important for correct usage of polyA sites for mRNA termination. Using exome sequencing and international matchmaking, we identified nine likely pathogenic germline variants in SCAF4 including two splice-site and seven truncating variants, all residing in the N-terminal two thirds of the protein.

View Article and Find Full Text PDF

Neurodevelopmental disorders (NDDs) are clinically and genetically extremely heterogeneous with shared phenotypes often associated with genes from the same networks. Mutations in TCF4, MEF2C, UBE3A, ZEB2 or ATRX cause phenotypically overlapping, syndromic forms of NDDs with severe intellectual disability, epilepsy and microcephaly. To characterize potential functional links between these genes/proteins, we screened for genetic interactions in Drosophila melanogaster.

View Article and Find Full Text PDF

Purpose: Pathogenic variants in the chromatin organizer CTCF were previously reported in seven individuals with a neurodevelopmental disorder (NDD).

Methods: Through international collaboration we collected data from 39 subjects with variants in CTCF. We performed transcriptome analysis on RNA from blood samples and utilized Drosophila melanogaster to investigate the impact of Ctcf dosage alteration on nervous system development and function.

View Article and Find Full Text PDF

Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion.

View Article and Find Full Text PDF

Objective: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome.

Methods: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression.

View Article and Find Full Text PDF

Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11.

View Article and Find Full Text PDF

Although the role of typical Rho GTPases and other Rho-linked proteins in synaptic plasticity and cognitive function and dysfunction is widely acknowledged, the role of atypical Rho GTPases (such as RHOBTB2) in neurodevelopment has barely been characterized. We have now identified de novo missense variants clustering in the BTB-domain-encoding region of RHOBTB2 in ten individuals with a similar phenotype, including early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorders. Three of the variants were recurrent.

View Article and Find Full Text PDF

Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH.

View Article and Find Full Text PDF
Article Synopsis
  • Deadenylases are enzymes that help break down a part of mRNA called the poly(A) tail, which is important for how genes work.
  • Researchers found that a specific mutation in a gene called TOE1 causes a rare disease called Pontocerebellar hypoplasia type 7 (PCH7) that affects the brain and body development.
  • They discovered that TOE1 is important for processing small nuclear RNAs (snRNAs), and if TOE1 is not working properly, these snRNAs don't get made correctly, which can lead to the symptoms of PCH7.
View Article and Find Full Text PDF