Publications by authors named "Andrey V Korolev"

 Combinations of distal radius fractures with scapholunate ligament (SL) injuries are hard to diagnose, and amalunited fractures with ligament damage are rarely discussed.  Here is presented a case of a 40-year-old man with history of a malunited distal radius fracture and a scapholunate rupture with a time difference of over a decade between assumed traumatic incidents. We present the results of a simultaneous treatment of both conditions with corrective osteotomy and osteosynthesis of the distal radius combined with SL tenodesis.

View Article and Find Full Text PDF
Article Synopsis
  • Plant fungal parasites, like Puccinia striiformis, manipulate the host's metabolic pathways, particularly the glyoxylate cycle, to enhance their survival during infection.
  • In bread wheat, the gene encoding the enzyme isocitrate lyase (TaICL) is expressed differently in susceptible versus resistant interactions with the pathogen, with the TaICL-B version upregulated in successful infections.
  • Disrupting the TaICL-B gene leads to stronger resistance against Pst, as the mutant accumulates more organic acids that inhibit fungal growth, suggesting that targeting TaICL in breeding could improve wheat resistance to fungal diseases.
View Article and Find Full Text PDF

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.

View Article and Find Full Text PDF

Plant pathogens suppress defense responses to evade recognition and promote successful colonization. Although identifying the genes essential for pathogen ingress has traditionally relied on screening mutant populations, the post-genomic era provides an opportunity to develop novel approaches that accelerate identification. Here, RNA-seq analysis of 68 pathogen-infected bread wheat (Triticum aestivum) varieties, including three (Oakley, Solstice and Santiago) with variable levels of susceptibility, uncovered a branched-chain amino acid aminotransferase (termed TaBCAT1) as a positive regulator of wheat rust susceptibility.

View Article and Find Full Text PDF

Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest.

View Article and Find Full Text PDF

The introduction of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties was a key component of the 'green revolution' and today these alleles are the primary sources of semi-dwarfism in wheat. The Rht-1 loci encode DELLA proteins, which are transcription factors that affect plant growth and stress tolerance. In bread wheat, Rht-D1b and Rht-B1b influence resistance to the disease Fusarium Head Blight.

View Article and Find Full Text PDF

Xylem vessels are cells that develop a specifically ornamented secondary cell wall to ensure their vascular function, conferring both structural strength and impermeability. Further plasticity is given to these vascular cells by a range of different patterns described by their secondary cell walls that-as for the growth of all plant organs-are developmentally regulated. Microtubules and their associated proteins, named MAPs, are essential to define the shape, the orientation, the position and the overall pattern of these secondary cell walls.

View Article and Find Full Text PDF

Xylem tracheary elements (TEs) form hollow, sap-conducting tubes kept open by thickened ribs of secondary cell wall that provide the major structural element in wood. These ribs are enriched with cellulose and lignin, molecules that utilize more atmospheric CO(2) than any other biopolymer on Earth. The thickenings form characteristic patterns (e.

View Article and Find Full Text PDF

AtMAP70-5 is the most divergent of a recently described multigene family of plant-specific microtubule-associated proteins (MAPs). It is significantly smaller than other members and has several isoform-specific sequence features. To confirm that this protein still functions as a MAP we show that it directly binds microtubules in vitro and decorates microtubules in vivo.

View Article and Find Full Text PDF

Most plant microtubule-associated proteins (MAPs) have homologues across the phylogenetic spectrum. To find potential plant-specific MAPs that will have evaded bioinformatic searches we devised a low stringency method for isolating proteins from an Arabidopsis cell suspension on endogenous taxol-microtubules. By tryptic peptide mass fingerprinting we identified 55 proteins that were enriched on taxol-microtubules.

View Article and Find Full Text PDF

Electronic absorption and emission spectra are reported for luminescent d(0) monoimido group 5 compounds M(NR)Cl(3)L(2) (M = Nb, Ta; R = alkyl, aryl; L = dme, Cl(-), py). These compounds display weak (epsilon < 200 M(-)(1) cm(-)(1)), well-resolved lowest-energy transitions in the high-energy visible and near-UV regions (20 000 < E(abs) < 29 000 cm(-)(1)). The energy of this absorption band depends strongly on the nature of the imido substituent, with a significant decrease observed when aryl groups are present.

View Article and Find Full Text PDF