Publications by authors named "Andreu Vaquer"

Patients with chronic obstructive pulmonary disease (COPD) often experience acute exacerbations characterized by elevated neutrophilic inflammation in the lungs. Currently, this condition is diagnosed through visual inspection of sputum color and volume, a method prone to personal bias and unsuitable for patients who are unable to expectorate spontaneously. In this manuscript, we present a novel approach for measuring and monitoring exhaled myeloperoxidase (MPO), a biomarker of neutrophilic airway inflammation, without the need for sputum analysis.

View Article and Find Full Text PDF

Lower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide, claiming millions of lives each year and imposing significant healthcare costs. Accurate detection of respiratory pathogens is essential for the effective management of LRTIs. However, this process often relies on sputum analysis, which requires extensive pretreatment steps.

View Article and Find Full Text PDF

Origami biosensors leverage paper foldability to develop total analysis systems integrated in a single piece of paper. This capability can also be utilized to incorporate additional features that would be difficult to achieve with rigid substrates. In this article, we report a new design for 3D origami biosensors called OriPlex, which leverages the foldability of filter paper for the multiplexed detection of bacterial pathogens.

View Article and Find Full Text PDF

() is a pathogen that persistently colonizes the respiratory tract of patients with chronic lung diseases. The risk of acquiring a chronic infection can be minimized by rapidly detecting the pathogen in the patient's airways and promptly administrating adequate antibiotics. However, the rapid detection of in the lungs involves the analysis of sputum, which is a highly complex matrix that is not always available.

View Article and Find Full Text PDF

Stratifying patients according to disease severity has been a major hurdle during the COVID-19 pandemic. This usually requires evaluating the levels of several biomarkers, which may be cumbersome when rapid decisions are required. In this manuscript we show that a single nanoparticle aggregation test can be used to distinguish patients that require intensive care from those that have already been discharged from the intensive care unit (ICU).

View Article and Find Full Text PDF

Measuring the colorimetric signals produced by the biospecific accumulation of colorimetric probes and recording the results is a key feature for next-generation paper-based rapid tests. Manual processing of these tests is time-consuming and prone to a loss of accuracy when interpreting faint and patchy signals. Proprietary, closed-source readers and software companies offering automated smartphone-based assay readings have both been criticized for interoperability issues.

View Article and Find Full Text PDF

Paper sensors with colorimetric signal transduction mechanisms are promising for developing single-use wearable patches that only require a smartphone to quantify signals. However, measuring biomarker fluctuations with colorimetric wearable sensors requires implementing a chrono-sampling method for performing sequential measurements. In this article, we report on a chrono-sampling method that enables the fabrication of wearable devices made entirely of filter paper.

View Article and Find Full Text PDF

Severe infections can cause a dysregulated response leading to organ dysfunction known as sepsis. Sepsis can be lethal if not identified and treated right away. This requires measuring biomarkers and pathogens rapidly at the different points where sepsis care is provided.

View Article and Find Full Text PDF

Detecting SARS-CoV-2 antigens in respiratory tract samples has become a widespread method for screening new SARS-CoV-2 infections. This requires a nasopharyngeal swab performed by a trained healthcare worker, which puts strain on saturated healthcare services. In this manuscript we describe a new approach for non-invasive COVID-19 diagnosis.

View Article and Find Full Text PDF

Low glucose levels during exercise may lead to hypoglycemia, which can have grave consequences in diabetic athletes. Mobile colorimetric wearable biosensors that measure glucose levels in sweat are ideal for self-monitoring as they can utilize the camera in smartphones for signal reading. However, colorimetric biosensors proposed thus far have higher limit of detection (LOD) than electrochemical devices, which makes them unsuitable for detecting hypoglycemia.

View Article and Find Full Text PDF

Decentralizing COVID-19 care reduces contagions and affords a better use of hospital resources. We introduce biosensors aimed at detecting severe cases of COVID-19 in decentralized healthcare settings. They consist of a paper immunosensor interfaced with a smartphone.

View Article and Find Full Text PDF

In this manuscript, we introduce a wearable analytical platform that simultaneously measures the concentration of sweat lactate and sample volume. It contains two sensors entirely made of filter paper that can be easily affixed on the skin with medical-grade tape. The lactate biosensor features a unique signal modulation mechanism that enables fine-tuning the dynamic range.

View Article and Find Full Text PDF