Publications by authors named "Andrea Bighinati"

Serotonergic modulation of pain transmission in the spinal cord involves the activation of multiple receptor types, including 5-HT receptors. Activation of spinal 5-HT receptors appears to have a predominant antinociceptive effect in various animal models. Although the serotonergic modulation of dorsal horn circuits has been extensively investigated, information about the specific effects of serotonergic receptors on identified neuron types remains limited.

View Article and Find Full Text PDF

Background: Photoreceptor death leads to inherited blinding retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, developing effective treatments is urgent. This study evaluates the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), which are known to restrict common cell death pathways associated with retinal diseases.

View Article and Find Full Text PDF

Variants in rhodopsin (RHO) have been linked to autosomal dominant congenital stationary night blindness (adCSNB), which affects the ability to see in dim light, and the pathogenetic mechanism is still not well understood. In this study we report two novel RHO variants found in adCSNB families, p.W265R and p.

View Article and Find Full Text PDF

Photoreceptor death causes blinding inheritable retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, finding effective treatments is urgent. This study focuses on developing a targeted approach by evaluating the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), known to restrict common cell death pathways associated with retinal diseases.

View Article and Find Full Text PDF

Purpose: In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity.

Methods: The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA.

View Article and Find Full Text PDF
Article Synopsis
  • - Retinitis pigmentosa (RP) is a rare retinal degeneration that primarily affects rod photoreceptors, leading to vision loss and blindness due to genetic mutations and high variability in affected genes.
  • - The disease progression involves complex molecular mechanisms of photoreceptor cell death, including common neurodegenerative stressors like oxidative stress and inflammation, as well as specific issues like high cGMP levels.
  • - The review highlights identified cell death pathways in RP and discusses various preclinical studies focused on therapeutic strategies aimed at preventing photoreceptor cell loss.
View Article and Find Full Text PDF

A drawback in the development of treatments that can reach the retina is the presence of barriers in the eye that restrain compounds from reaching the target. Intravitreal injections hold promise for retinal delivery, but the natural defenses in the vitreous can rapidly degrade or eliminate therapeutic molecules. Injectable hydrogel implants, which act as a reservoir, can allow for long-term drug delivery with a single injection into the eye, but still suffer due to the fast clearance of the released drugs when traversing the vitreous and random diffusion that leads to lower pharmaceutic efficacy.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is a rare autosomal recessive inborn error of metabolism where the mainstay of treatment is a Phe restricted diet consisting of a combination of limited amounts of natural protein with supplementation of Phe-free or low-Phe protein substitutes and special low protein foods. Suboptimal outcomes may be related to the different absorption kinetics of free AAs, which have lower biological efficacy than natural proteins. Physiomimic Technology is a technology engineered to prolong AA (AA-PT) release allowing physiological absorption and masking the odor and taste of free AAs.

View Article and Find Full Text PDF

The self-repair ability of tissues and organs in case of injury and disease is a fundamental biological mechanism and an important therapeutic target. The tissue plasticity and the presence of adult stem cell niches open a new path in the development of pharmacological and non-pharmacological treatments finalized to improve the intrinsic regeneration.In this context, nerve growth factor (NGF) is widely studied for its capability of driving endogenous regeneration of ectoderm-derived tissues, directly acting on the cell targets and through the regulation of the stem cell niches.

View Article and Find Full Text PDF

"Neuroplasticity" is often evoked to explain adaptation and compensation after acute lesions of the Central Nervous System (CNS). In this study, we investigated the modification of 80 genes involved in synaptic plasticity at different times (24 h, 8 and 45 days) from the traumatic spinal cord injury (SCI), adopting a bioinformatic analysis. mRNA expression levels were analyzed in the motor cortex, basal ganglia, cerebellum and in the spinal segments rostral and caudal to the lesion.

View Article and Find Full Text PDF

The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is an incurable condition, in which a cascade of cellular and molecular events triggered by inflammation and excitotoxicity impairs endogenous regeneration, namely remyelination and axonal outgrowth. We designed a treatment solution based on an implantable biomaterial (electrospun poly (l-lactic acid) [PLLA]) loaded with ibuprofen and triiodothyronine (T3) to counteract inflammation, thus improving endogenous regeneration. efficacy was tested by implanting the drug-loaded PLLA in the rat model of T8 contusion SCI.

View Article and Find Full Text PDF

Myelin is the main component of the white matter of the central nervous system (CNS), allowing the proper electrical function of the neurons by ensheathing and insulating the axons. The extensive use of magnetic resonance imaging has highlighted the white matter alterations in Alzheimer's dementia (AD) and other neurodegenerative diseases, alterations which are early, extended, and regionally selective. Given that the white matter turnover is considerable in the adulthood, and that myelin repair is currently recognized as being the only true reparative capability of the mature CNS, oligodendrocyte precursor cells (OPCs), the cells that differentiate in oligodendrocyte, responsible for myelin formation and repair, are regarded as a potential target for neuroprotection.

View Article and Find Full Text PDF

Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed.

View Article and Find Full Text PDF