Traffic-related air pollution is a major public health concern, contributing to respiratory and cardiovascular diseases worldwide. The aim of this study was to investigate the feasibility of using a mobile Air-Liquid Interface (ALI) system to assess the cytotoxicity and inflammatory potential of freshly generated PM (particle matter with aerodynamic diameter <2.5 μm) in a road tunnel in Stockholm.
View Article and Find Full Text PDFIn this study, we investigated the impact of iron-rich nanoparticles derived from different locations in the subway on the innate immune system in blood. Nanoparticles were generated from Third Rail, Rail, and Wheel materials and characterized using several techniques. The response in a human whole-blood model was analyzed using ELISA and capillary immunoelectrophoresis.
View Article and Find Full Text PDFNanoparticles (ultrafine particles) are prevalent in various environments and raise concerns due to their potential health effects. In this study, we aimed to enhance the understanding of the toxicity associated with nanoparticles generated within subway systems. Specifically, we investigated nanoparticles produced using spark discharge from electrodes made of the same material as the third rail (which provides electric power), rail, and wheel components in the Stockholm subway system.
View Article and Find Full Text PDFRoad traffic is an important source of urban air pollutants. Due to increasingly strict controls of exhaust emissions from road traffic, their contribution to the total emissions has strongly decreased over time in high-income countries. In contrast, non-exhaust emissions from road vehicles are not yet legislated and now make up the major proportion of road traffic emissions in many countries.
View Article and Find Full Text PDFAir pollution is one of the most severe environmental healthhazards, and airborne nanoparticles (diameter <100 nm) are considered particularly hazardous to human health. They are produced by various sources such as internal combustion engines, wood and biomass burning, and fuel and natural gas combustion, and their origin, among other parameters, determines their intrinsic toxicity for reasons that are not yet fully understood. Many constituents of the nanoparticles are considered toxic or at least hazardous, including polycyclic aromatic hydrocarbons (PAHs) and heavy metal compounds, in addition to gaseous pollutants present in the aerosol fraction, such as NOx, SO and ozone.
View Article and Find Full Text PDFGasoline emissions contain high levels of pollutants, including particulate matter (PM), which are associated with several health outcomes. Moreover, due to the depletion of fossil fuels, biofuels represent an attractive alternative, particularly second-generation biofuels (B2G) derived from lignocellulosic biomass. Unfortunately, compared to the abundant literature on diesel and gasoline emissions, relatively few studies are devoted to alternative fuels and their health effects.
View Article and Find Full Text PDFUltrafine particles represent a growing concern in the public health community but their precise role in many illnesses is still unknown. This lack of knowledge is related to the experimental difficulty in linking their biological effects to their multiple properties, which are important determinants of toxicity. Our aim is to propose an interdisciplinary approach to study fine (FP) and ultrafine (UFP) particles, generated in a controlled manner using a miniCAST (Combustion Aerosol Standard) soot generator used with two different operating conditions (CAST1 and CAST3).
View Article and Find Full Text PDFA new HPLC method for the simultaneous quantitative analysis of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) was developed and validated. ATP, ADP, and AMP were extracted from human bronchial epithelial cells with a rapid extraction procedure and separated with a C18 column (3 × 150 mm, 2.7 µm) using isocratic elution with a mobile phase consisting of 50 mM of potassium hydrogen phosphate (pH 6.
View Article and Find Full Text PDF