Cytotoxicity (i.e. cell death) is the core mechanism by which chemotherapy induces its anti-cancer effects.
View Article and Find Full Text PDFGastrointestinal mucositis could potentially compromise drug absorption due to functional loss of mucosa and other pathophysiological changes in the gastrointestinal microenvironment. Little is known about this effect on commonly used anti-infectives. This study aimed to explore the association between different stages of gastrointestinal mucositis, drug exposure, and gut microbiota.
View Article and Find Full Text PDFAntimicrobial prophylaxis is increasingly being used in patients with hematological malignancies receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT). However, few studies have focused on the potential impact of gastrointestinal mucositis (GI-M), a frequently observed side effect of chemotherapy in patients with cancer that affects the gastrointestinal microenvironment, on drug absorption. In this review, we discuss how chemotherapy leads to an overall loss of mucosal surface area and consequently to uncontrolled transport across the barrier.
View Article and Find Full Text PDFMucositis is a common side-effect of chemotherapy treatment, inducing alterations in the composition of the gut microbiota. Redox active compounds, such as vitamins B2 and C, have been shown to reduce inflammation and enhance the growth of anaerobic bacteria in the gut. We therefore aimed to (1) validate the ability of these compounds to promote bacterial cell growth in vitro, and (2) determine their prophylactic efficacy in a rat model of methotrexate (MTX)-induced mucositis.
View Article and Find Full Text PDF