Publications by authors named "Ambrin Fatima"

Male infertility affects a significant number of couples worldwide, yet the precise causes and genetic mechanisms underlying this condition remain largely unknown. To investigate the monogenic causes of primary male infertility, we performed exome sequencing (ES) in a cohort of 100 unrelated Pakistani male patients with non-obstructive, non-syndromic primary infertility. ES identified potential causal variants in established infertility-associated genes in 17/100 patients, resulting in a diagnostic yield of 17%.

View Article and Find Full Text PDF

Dmrta2 (also designated Dmrt5) is a transcriptional regulator expressed in cortical progenitors in a caudomedial/rostrolateral gradient with important roles at different steps of cortical development. Dmrta2 has been suggested to act in cortex development mainly by differential suppression of and other homeobox transcription factors such as the ventral telencephalic regulator , which remains to be fully demonstrated. Here we have addressed the epistatic relation between Pax6 and Dmrta2 by comparing phenotypes in mutant embryos or embryos overexpressing both genes in various allelic combinations.

View Article and Find Full Text PDF

Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied.

View Article and Find Full Text PDF

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have been described in only six individuals carrying five biallelic predicted loss-of-function (pLOF) variants.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic causes of congenital hypogonadotropic hypogonadism (CHH), a rare disorder linked to deficiencies in gonadotropin-releasing hormone (GnRH), in six families from Pakistan.
  • - Researchers used genome sequencing to identify pathogenic single nucleotide variants and copy number variants, discovering novel mutations in known CHH-related genes such as GNRHR and KISS1R in four families, while two others had significant deletions in the ANOS1 gene.
  • - The findings highlight the importance of using a comprehensive analysis of genetic variants to enhance diagnostic accuracy for CHH patients.
View Article and Find Full Text PDF

The transcription factor ZEB2 is essential for early embryonic development. Using CRISPR/Cas9, we generated a ZEB2 deficient human iPSC cell line (KICRi002A-4), carrying a homozygous 790 bp deletion in ZEB2 that involves part of exon 5, intron 5 and part of exon 6. The deletion leads to markedly reduced levels of a truncated ZEB2 transcript.

View Article and Find Full Text PDF

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families.

View Article and Find Full Text PDF

Spinocerebellar disorders are a vast group of rare neurogenetic conditions, generally characterized by overlapping clinical symptoms including progressive cerebellar ataxia, spastic paraparesis, cognitive deficiencies, skeletal/muscular and ocular abnormalities. The objective of the present study is to identify the underlying genetic causes of the rare spinocerebellar disorders in the Pakistani population. Herein, nine consanguineous families presenting different spinocerebellar phenotypes have been investigated using whole exome sequencing.

View Article and Find Full Text PDF

Background: Infertility is defined as failure to achieve a clinical pregnancy after 12 months of unprotected intercourse. It affects 15% of couples globally and 22% of couples within Pakistan. Female infertility can be caused by numerous genetic or environmental factors including hormone imbalances and exposure to chemicals or radiation.

View Article and Find Full Text PDF

Intellectual developmental disorder with paroxysmal dyskinesia or seizures (IDDPADS, OMIM#619150) is an ultra-rare childhood-onset autosomal recessive movement disorder manifesting paroxysmal dyskinesia, global developmental delay, impaired cognition, progressive psychomotor deterioration and/or drug-refractory seizures. We investigated three consanguineous Pakistani families with six affected individuals presenting overlapping phenotypes partially consistent with the reported characteristics of IDDPADS. Whole exome sequencing identified a novel missense variant in Phosphodiesterase 2A (PDE2A): NM_002599.

View Article and Find Full Text PDF

Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor . Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability.

View Article and Find Full Text PDF

Autosomal recessive spinocerebellar ataxia-13 (SCAR13) is an ultra-rare disorder characterized by slowly progressive cerebellar ataxia, cognitive deficiencies, and skeletal and oculomotor abnormalities. The objective of this case report is to expand the clinical and molecular spectrum of SCAR13. We investigated a consanguineous Pakistani family with four patients partially presenting with clinical features of SCAR13 using whole exome sequencing.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been a pandemic disease reported in almost every country and causes life-threatening, severe respiratory symptoms. Recent studies showed that various environmental selection pressures challenge the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infectivity and, in response, the virus engenders new mutations, leading to the emergence of more virulent strains of WHO concern. Advance prediction of the forthcoming virulent SARS-CoV-2 strains in response to the principal environmental selection pressures like temperature and solar UV radiation is indispensable to overcome COVID-19.

View Article and Find Full Text PDF

Microcephaly primary hereditary (MCPH) is a congenital disease characterized by nonsyndromic reduction in brain size due to impaired neurogenesis, often associated with a variable degree of intellectual disability (ID). The genetic etiology of MCPH is heterogeneous and comprises more than 20 loci, nearly all following a recessive inheritance pattern. The first causative gene identified, or , encodes a centrosomal protein that modulates chromosome condensation and cell cycle progression.

View Article and Find Full Text PDF

Schizophrenia is a disabling neuropsychiatric disorder of adulthood onset with high heritability. Worldwide collaborations have identified an association of ~270 common loci, with small individual effects and hence weak clinical implications. The recent technological feasibility of exome sequencing enables the identification of rare variants of high penetrance that refine previous findings and improve risk assessment and prognosis.

View Article and Find Full Text PDF

Heterozygous variants in POLR2A, encoding the largest subunit of RNA polymerase II, cause severe neurodevelopmental and multisystem abnormalities in humans. Using CRISPR/Cas9 we generated the human iPSC line KICRi002A-5 with a heterozygous truncating 4 bp insertion in exon 5 of the POLR2A gene. Analysis using qRT-PCR confirmed reduced POLR2A mRNA in KICRi002A-5 vs.

View Article and Find Full Text PDF

Congenital microcephaly is the clinical presentation of significantly reduced head circumference at birth. It manifests as both non-syndromic-microcephaly primary hereditary (MCPH)-and syndromic forms and shows considerable inter- and intrafamilial variability. It has been hypothesized that additional genetic variants may be responsible for this variability, but data are sparse.

View Article and Find Full Text PDF

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures.

View Article and Find Full Text PDF

Down syndrome (DS) is caused by trisomy for chromosome 21 (T21). We generated two induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two males with DS using Sendai virus delivery of OCT4, SOX2, KLF4, and c-MYC. Characterization of the two iPSC lines, UUIGPi013-A and UUIPGi014-A, showed that they are genetically stable with a 47,XY,+21 karyotype.

View Article and Find Full Text PDF

Primary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.

View Article and Find Full Text PDF

Diamond-Blackfan Anemia (DBA) is a congenital pure red cell aplasia caused by heterozygous variants in ribosomal protein genes. The hematological features associated with DBA are highly variable and non-hematological abnormalities are common. We report herein on an affected mother and her daughter presenting with transfusion-dependent anemia.

View Article and Find Full Text PDF

The role of Neurochondrin (NCDN) in humans is not well understood. Mice with a conditional Ncdn knock-out show epileptic seizures, depressive-like behaviours and impaired spatial learning. Using CRISPR/Cas9, we generated a Neurochondrin deficient human iPSC line KICRi002-A-3 carrying a homozygous 752 bp deletion / 2 bp insertion in the NCDN gene.

View Article and Find Full Text PDF

Incontinentia pigmenti (IP) is an X-linked dominant neuroectodermal dysplasia caused by loss-of-function mutations in the IKBKG gene. Using CRISPR/Cas9 technology, we generated an IKBKG knock-out iPSC line (KICRi002-A-1) on a 46,XY background. The iPSC line showed a normal karyotype, expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro.

View Article and Find Full Text PDF