Publications by authors named "Amanda Piano"

Anxiety symptomatology and metabolic functioning are intricately related, with associated mechanisms yet to be fully delineated. Nutritional manipulations may influence these outcomes in a sex-specific manner. This study characterized the interactive effects of the Cerebiome® probiotic and the D12079B-formulated Western diet (WD) on anxiety- and feeding-related behaviors and physiological outcomes in 80 male and female Long-Evans rats born to dams also administered either the probiotic or placebo during gestation and lactation.

View Article and Find Full Text PDF

We propose a hypothesis of a mechanism linking cellular aging to cellular quiescence in chronologically aging budding yeast. Our hypothesis posits that this mechanism integrates four different processes, all of which are initiated after yeast cells cultured in a medium initially containing glucose consume it. Quiescent cells that develop in these cultures can be separated into the high- and low-density sub-populations of different buoyant densities.

View Article and Find Full Text PDF

Background: Probiotics may provide a benefit for adults with Prader-Willi syndrome (PWS) experiencing constipation. The primary aim was to determine if Bifidobacterium animalis ssp. lactis B94 (B.

View Article and Find Full Text PDF

Specific probiotic strains can alleviate the gastrointestinal (GI) symptoms and psychiatric comorbidities of irritable bowel syndrome (IBS). In this randomized, double-blind, placebo-controlled study, the efficacy of HA-196 () and R0175 () in reducing the GI and psychological symptoms of IBS was evaluated in 251 adults with either constipation (IBS-C), diarrhea (IBS-D), or mixed-pattern (IBS-M). Following a 2-week run-in period, participants were randomized to one of three interventions: ( = 84), ( = 83) or placebo ( = 81).

View Article and Find Full Text PDF

Few studies have focused on dose-response analyses of multi-strain probiotics in the general adult population. This study aimed at comparing how a low- and high-dose of a multi-strain probiotic supplement (containing R0052, R0011, R0215, R1001, R0070, ssp. BB536, R1012, ssp.

View Article and Find Full Text PDF

Background: Higher protein intakes may help reduce sarcopenia and facilitate recovery from illness and injury in older adults. However, high-protein diets (HPDs) including animal-sourced foods may negatively perturb the microbiota, and provision of probiotics and prebiotics may mitigate these effects.

Objective: The aim of this study was to examine the effects of HPD, with and without a probiotic and/or prebiotic, on gut microbiota and wellness in older women.

View Article and Find Full Text PDF

() -infection (CDI), a nosocomial gastrointestinal disorder, is of growing concern due to its rapid rise in recent years. Antibiotic therapy of CDI is associated with disrupted metabolic function and altered gut microbiota. The use of probiotics as an adjunct is being studied extensively due to their potential to modulate metabolic functions and the gut microbiota.

View Article and Find Full Text PDF

A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake.

View Article and Find Full Text PDF

Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms.

View Article and Find Full Text PDF

We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon.

View Article and Find Full Text PDF

Age is the major risk factor in the incidence of cancer, a hyperplastic disease associated with aging. Here, we discuss the complex interplay between mechanisms underlying aging and cancer as a reciprocal relationship. This relationship progresses with organismal age, follows the history of cell proliferation and senescence, is driven by common or antagonistic causes underlying aging and cancer in an age-dependent fashion, and is maintained via age-related convergent and divergent mechanisms.

View Article and Find Full Text PDF

Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a "program of aging" - i.

View Article and Find Full Text PDF

An exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA) elicits "liponecrosis," a mode of programmed cell death (PCD) which differs from the currently known PCD subroutines. Here, we report the following mechanism for liponecrotic PCD. Exogenously added POA is incorporated into POA-containing phospholipids that then amass in the endoplasmic reticulum membrane, mitochondrial membranes and the plasma membrane.

View Article and Find Full Text PDF

Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms.

View Article and Find Full Text PDF

A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast.

View Article and Find Full Text PDF

We identified a form of cell death called "liponecrosis." It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death.

View Article and Find Full Text PDF