Publications by authors named "Allan D Cembella"

Members of the benthic marine dinoflagellate genus produce a variety of bioactive compounds, exhibiting potent cytotoxicity in cell assays. Crude methanolic extracts from three genetically distinct cultured strains of J.J.

View Article and Find Full Text PDF

Interactions between bacterial microbiota and epibenthic species of the dinoflagellate Prorocentrum may define the onset and persistence of benthic harmful algal blooms (bHABs). Chemical ecological interactions within the dinoflagellate phycosphere potentially involve a complex variety of organic molecules, metabolites, and toxins, including undefined bioactive compounds. In this study, the bacterial diversity and core members of the dinoflagellate-associated microbiota were defined from 11 strains of three epibenthic Prorocentrum species, representing three geographically disjunct locations within Mexican coastal waters.

View Article and Find Full Text PDF

Benthic dinoflagellates produce a wide array of bioactive compounds, primarily polyketides, that cause toxic effects on human consumers of seafood and perhaps mediate species interactions in the benthic microenvironment. This study assesses toxic and other bioactive effects of the benthic dinoflagellate (strain AA60) in two targeted bioassays. The brine shrimp () bioassay revealed lethal effects of direct exposure to live dinoflagellate cells (Treatment A) and even higher potency with ethanolic extracts of lysed cells (Treatment D).

View Article and Find Full Text PDF

The IOC-ICES-PICES Harmful Algal Event Database (HAEDAT) was used to describe the diversity and spatiotemporal distribution of harmful algal events along the Atlantic margin of Europe from 1987 - 2018. The majority of events recorded are caused by Diarrhetic Shellfish Toxins (DSTs). These events are recorded annually over a wide geographic area from southern Spain to northern Scotland and Iceland, and are responsible for annual closures of many shellfish harvesting areas.

View Article and Find Full Text PDF

Bacterial diversity was explored among field samples and cultured isolates from coral reefs within the Veracruz Reef System. Bacterioplankton and bacteriobenthos were characterized by pyrosequencing 16S rRNA genes. Identified sequences belonged to the kingdom Bacteria and classified into 33 phyla.

View Article and Find Full Text PDF
Article Synopsis
  • A new LC-MS/MS method was created to detect and quantify karlotoxins, focusing on specific compounds from marine dinoflagellate cultures.
  • The method successfully established a limit of detection for KmTx-2 at 2.5 ng and provided detailed fragmentation patterns for the identification of various karlotoxins.
  • Additionally, five new potential karlotoxins were discovered from a marine strain in the Ebro Delta, showcasing the method's effectiveness in analyzing diverse marine isolates.
View Article and Find Full Text PDF

Guanidinium toxins, such as saxitoxin (STX), tetrodotoxin (TTX) and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (Na). Members of the STX group, known collectively as paralytic shellfish toxins (PSTs), are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria.

View Article and Find Full Text PDF

Harmful Algal Bloom (HAB) surveillance is complicated by high diversity of species and associated phycotoxins. Such species-level information on taxonomic affiliations and on cell abundance and toxin content is, however, crucial for effective monitoring, especially of aquaculture and fisheries areas. The aim addressed in this study was to determine putative HAB taxa and related phycotoxins in plankton from aquaculture sites in the Ebro Delta, NW Mediterranean.

View Article and Find Full Text PDF

Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na⁺ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.

View Article and Find Full Text PDF

The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.

View Article and Find Full Text PDF

The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species.

View Article and Find Full Text PDF

Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.

View Article and Find Full Text PDF

Background: The dinoflagellate Alexandrium minutum typically produces paralytic shellfish poisoning (PSP) toxins, which are known only from cyanobacteria and dinoflagellates. While a PSP toxin gene cluster has recently been characterized in cyanobacteria, the genetic background of PSP toxin production in dinoflagellates remains elusive.

Results: We constructed and analysed an expressed sequence tag (EST) library of A.

View Article and Find Full Text PDF

Genotypic or phenotypic markers for characterization of natural populations of marine microalgae have typically addressed questions regarding differentiation among populations, usually with reference to a single or few clonal isolates. Based upon a large number of contemporaneous isolates from the same geographical population of the toxigenic species Alexandrium tamarense from the North Sea, we uncovered significant genetic substructure and low but significant multilocus linkage disequilibrium (LD) within the planktonic population. Between the alternative molecular genotyping approaches, only amplified fragment length polymorphism (AFLP) revealed cryptic genetic population substructure by Bayesian clustering, whereas microsatellite markers failed to yield concordant patterns.

View Article and Find Full Text PDF

Lipophilic phycotoxins in size-fractionated plankton net tows (20 mum mesh-size) were measured on-board during a month-long oceanographic cruise in North Sea coastal waters. Tandem mass spectrometry coupled to liquid chromatography (LC-MS/MS) was employed for the detection and quantification of a broad spectrum of known and putative phycotoxins. For pectenotoxins (PTXs) the following ion masses ([M + NH(4)](+)) were monitored: m/z 876 for PTX-2, m/z 892 for PTX-11 and PTX-13, and m/z 874 for PTX-12 and PTX-14.

View Article and Find Full Text PDF

Biosynthetic origins of the cyclic imine toxin 13-desmethyl spirolide C were determined by supplementing cultures of the toxigenic dinoflagellate Alexandrium ostenfeldii with stable isotope-labeled precursors [1,2-13C2]acetate, [1-13C]acetate, [2-13CD3]acetate, and [1,2-13C2,15N]glycine and measuring the incorporation patterns by 13C NMR spectroscopy. Despite partial scrambling of the acetate labels, the results show that most carbons of the macrocycle are polyketide-derived and that glycine is incorporated as an intact unit into the cyclic imine moiety. This work represents the first conclusive evidence that such cyclic imine toxins are polyketides and provides support for biosynthetic pathways previously defined for other polyether dinoflagellate toxins.

View Article and Find Full Text PDF

Using LC/MS methodology, spirolides were detected in two clonal isolates of Alexandrium ostenfeldii isolated from Limfjorden, Denmark. Examination of the LC/MS profiles of extracts from these Danish cultures revealed the presence of two dominant peaks representing two previously unidentified spirolide components and one minor peak identified as the previously reported desmethyl spirolide C (1). Culturing of these clonal strains, LF 37 and LF 38, of A.

View Article and Find Full Text PDF