Publications by authors named "Alfredo J Garcia"

Unlabelled: Respiration is an essential involuntary function necessary for survival. This poses a challenge for the control of breathing. The preBötzinger complex (preBötC) is a heterogeneous neuronal network responsible for driving the inspiratory rhythm.

View Article and Find Full Text PDF

Opioid-induced respiratory depression (OIRD) is the hallmark of opioid overdose and a major risk factor for death due to fentanyl use. Although repeat opioid use (ROU) elevates the risk of death, understanding its influence over breathing and its control has been poorly resolved. We developed a mouse model of recurrent fentanyl use over 5 days to examine how ROU impacts breathing and activity from the pre-Bötzinger complex (preBötC), the brainstem network driving inspiratory rhythmogenesis.

View Article and Find Full Text PDF

Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates.

View Article and Find Full Text PDF
Article Synopsis
  • Drp1 is a GTPase protein that promotes mitochondrial fission and increases reactive oxygen species (ROS) in heart cells, making it a potential target for reducing damage from ischemia/reperfusion (IR) injury.
  • Using both cardiomyocyte-specific Drp1 knockout (KO) mice and a new, specific Drp1 inhibitor (Drpitor1a), researchers found that short-term Drp1 inhibition improves heart function and mitochondrial performance after IR injury.
  • However, prolonged ablation of Drp1 led to cardiomyopathy, indicating that while short-term Drp1 inhibition can be beneficial, extended absence may disrupt normal heart function.
View Article and Find Full Text PDF

Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the mechanistic basis of nIH-induced changes to neurophysiology remains poorly resolved.

View Article and Find Full Text PDF

Unlabelled: Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the underlying mechanistic consequences nIH-induced neurophysiological changes remains poorly resolved.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is characterized by sporadic collapse of the upper airway leading to periodic disruptions in breathing. Upper airway patency is governed by genioglossal nerve activity that originates from the hypoglossal motor nucleus. Mice with targeted deletion of the gene encoding the carbon monoxide (CO) producing enzyme, heme oxygenase-2 (HO-2), exhibit OSA, yet the contribution of central HO-2 dysregulation to the phenomenon is unknown.

View Article and Find Full Text PDF

The COVID-19 pandemic has brought attention to the need for developing effective respiratory support that can be rapidly implemented during critical surge capacity scenarios in healthcare settings. Lung support with bubble continuous positive airway pressure (B-CPAP) is a well-established therapeutic approach for supporting neonatal patients. However, the effectiveness of B-CPAP in larger pediatric and adult patients has not been addressed.

View Article and Find Full Text PDF

The gene KCNJ11 encodes Kir6.2 a major subunit of the ATP-sensitive potassium channel (K) expressed in both the pancreas and brain. Heterozygous gain of function mutations in KCNJ11 can cause neonatal diabetes mellitus (NDM).

View Article and Find Full Text PDF

Background: Neurological injury following successful resuscitation from sudden cardiac arrest (CA) is common. The pathophysiological basis of this injury remains poorly understood, and treatment options are limited. Microglial activation and neuroinflammation are established contributors to many neuropathologies, such as Alzheimer disease and traumatic brain injury, but their potential role in post-CA injury has only recently been recognized.

View Article and Find Full Text PDF

Changed NMDA receptor (NMDAr) physiology is implicated with cognitive deficit resulting from conditions ranging from normal aging to neurological disease. Using intermittent hypoxia (IH) to experimentally model untreated sleep apnea, a clinical condition whose comorbidities include neurocognitive impairment, we recently demonstrated that IH causes a pro-oxidant condition that contributes to deficits in spatial memory and in NMDAr-dependent long-term potentiation (LTP). However, the impact of IH on additional forms of synaptic plasticity remains ill-defined.

View Article and Find Full Text PDF

Respiratory parameters change during post-natal development, but the nature of their changes have not been well-described. The advent of commercially available plethysmographic instruments provided improved repeatability of measurements and standardization of measured breathing in mice across laboratories. These technologies thus allowed for exploration of more precise respiratory pattern changes during the post-natal developmental epoch.

View Article and Find Full Text PDF

Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO and/or O respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS.

View Article and Find Full Text PDF

Sleep apnea causes cognitive deficits and is associated with several neurologic diseases. Intermittent hypoxia (IH) is recognized as a principal mediator of pathophysiology associated with sleep apnea, yet the basis by which IH contributes to impaired cognition remains poorly defined. Using a mouse model exposed to IH, this study examines how the transcription factor, hypoxia inducible factor 1a (HIF1a), contributes to disrupted synaptic physiology and spatial memory.

View Article and Find Full Text PDF

Encountered in a number of clinical conditions, repeated hypoxia/reoxygenation during the neonatal period can pose both a threat to immediate survival as well as a diminished quality of living later in life. This review focuses on our current understanding of central respiratory rhythm generation and the role that hypoxia and reoxygenation play in influencing rhythmogenesis. Here, we examine the stereotypical response of the inspiratory rhythm from the preBötzinger complex (preBötC), basic neuronal mechanisms that support rhythm generation during the peri-hypoxic interval, and the physiological consequences of inspiratory network responsivity to hypoxia and reoxygenation, acute and chronic intermittent hypoxia, and oxidative stress.

View Article and Find Full Text PDF

Individuals with sleep apnea often exhibit changes in cognitive behaviors consistent with alterations in the hippocampus. It is hypothesized that adult neurogenesis in the dentate gyrus is an ongoing process that maintains normal hippocampal function in many mammalian species, including humans. However, the impact of chronic intermittent hypoxia (IH), a principal consequence of sleep apnea, on hippocampal adult neurogenesis remains unclear.

View Article and Find Full Text PDF

The preBötzinger complex (preBötC) is a medullary brainstem network crucially involved in the generation of different inspiratory rhythms. In the isolated brainstem slice, the preBötC reconfigures to produce different rhythms that we refer to as "fictive eupnea" under baseline conditions (i.e.

View Article and Find Full Text PDF

Unraveling the interplay of excitation and inhibition within rhythm-generating networks remains a fundamental issue in neuroscience. We use a biophysical model to investigate the different roles of local and long-range inhibition in the respiratory network, a key component of which is the pre-Bötzinger complex inspiratory microcircuit. Increasing inhibition within the microcircuit results in a limited number of out-of-phase neurons before rhythmicity and synchrony degenerate.

View Article and Find Full Text PDF

The response of the brainstem to increased levels of carbon dioxide in the blood is coordinated with the response of the cardiovascular system.

View Article and Find Full Text PDF

Breathing must be tightly coordinated with other behaviours such as vocalization, swallowing, and coughing. These behaviours occur after inspiration, during a respiratory phase termed postinspiration. Failure to coordinate postinspiration with inspiration can result in aspiration pneumonia, the leading cause of death in Alzheimer's disease, Parkinson's disease, dementia, and other neurodegenerative diseases.

View Article and Find Full Text PDF

Chronic intermittent hypoxia (CIH) is a common state experienced in several breathing disorders, including obstructive sleep apnea (OSA) and apneas of prematurity. Unraveling how CIH affects the CNS, and in turn how the CNS contributes to apneas is perhaps the most challenging task. The preBötzinger complex (preBötC) is a pre-motor respiratory network critical for inspiratory rhythm generation.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE2) augments distinct inspiratory motor patterns, generated within the preBötzinger complex (preBötC), in a dose-dependent way. The frequency of sighs and gasping are stimulated at low concentrations, while the frequency of eupnoea increases only at high concentrations. We used in vivo microinjections into the preBötC and in vitro isolated brainstem slice preparations to investigate the dose-dependent effects of PGE2 on the preBötC activity.

View Article and Find Full Text PDF

Distinct populations of neurons within the brainstem are responsible for generating and coordinating the rhythmic patterns of neural activity that underlie breathing.

View Article and Find Full Text PDF

Previously we defined neuronal subclasses within the mouse peripheral nervous system using an experimental strategy called "constellation pharmacology." Here we demonstrate the broad applicability of constellation pharmacology by extending it to the CNS and specifically to the ventral respiratory column (VRC) of mouse brainstem, a region containing the neuronal network controlling respiratory rhythm. Analysis of dissociated cells from this locus revealed three major cell classes, each encompassing multiple subclasses.

View Article and Find Full Text PDF