Circadian rhythms in mammals are tightly regulated through phosphorylation of Period (PER) proteins by Casein Kinase 1 (CK1, subtypes δ and ε). CK1 acts on at least two different regions of PER with opposing effects: phosphorylation of phosphodegron (pD) regions leads to PER degradation, while phosphorylation of the Familial Advanced Sleep Phase (FASP) region leads to PER stabilization. To investigate how substrate selectivity is encoded by the conformational dynamics of CK1, we performed a large set of independent molecular dynamics (MD) simulations of wildtype CK1 and the mutant (R178C) that biases kinase activity toward a pD.
View Article and Find Full Text PDFPERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ.
View Article and Find Full Text PDFNat Struct Mol Biol
August 2022
The AAA family member KaiC is the central pacemaker for circadian rhythms in the cyanobacterium Synechococcus elongatus. Composed of two hexameric rings of adenosine triphosphatase (ATPase) domains with tightly coupled activities, KaiC undergoes a cycle of autophosphorylation and autodephosphorylation on its C-terminal (CII) domain that restricts binding of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryogenic-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding on CI.
View Article and Find Full Text PDFPost-translational control of PERIOD stability by Casein Kinase 1δ and ε (CK1) plays a key regulatory role in metazoan circadian rhythms. Despite the deep evolutionary conservation of CK1 in eukaryotes, little is known about its regulation and the factors that influence substrate selectivity on functionally antagonistic sites in PERIOD that directly control circadian period. Here we describe a molecular switch involving a highly conserved anion binding site in CK1.
View Article and Find Full Text PDF