The brain must identify objects from different viewpoints that change the retinal image. This study examined the conditions under which the brain spends computational resources to construct view-invariant, extraretinal representations in a 3D virtual environment. We focused on extraretinal representation of visual symmetry.
View Article and Find Full Text PDFObjects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective.
View Article and Find Full Text PDFThe human visual system is tuned to symmetry, and the neural response to visual symmetry has been well studied. One line of research measures an Event Related Potential (ERP) component called the Sustained Posterior Negativity (SPN). Amplitude is more negative at posterior electrodes when participants see symmetrical patterns compared to asymmetrical patterns.
View Article and Find Full Text PDFNeuroimage
November 2024
Symmetrical objects only project a symmetrical image onto the retina when viewed from certain angles. Previous work has investigated the ERP response to visual symmetry in frontoparallel and perspective views. When participants are attending to regularity, the ERPs are the same.
View Article and Find Full Text PDFIdentifying and segmenting objects in an image is generally achieved effortlessly and is facilitated by the presence of symmetry: a principle of perceptual organisation used to interpret sensory inputs from the retina into meaningful representations. However, while imaging studies show evidence of symmetry selective responses across extrastriate visual areas in the human brain, whether symmetry is processed automatically is still under debate. We used functional Magnetic Resonance Imaging (fMRI) to study the response to and representation of two types of symmetry: reflection and rotation.
View Article and Find Full Text PDFPsychophysiology
September 2024
Visual symmetry activates a network of regions in the extrastriate cortex and generates an event-related potential (ERP) called the sustained posterior negativity (SPN). Previous work has found that the SPN is robust to experimental manipulations of task, spatial attention, and memory load. In the current study, we investigated whether the SPN is also robust to alcohol-induced changes in mental state.
View Article and Find Full Text PDFVisual symmetry at fixation generates a bilateral Event Related Potential (ERP) called the Sustained Posterior Negativity (SPN). Symmetry presented in the left visual hemifield generates a contralateral SPN over the right hemisphere and vice versa. The current study examined whether the contralateral SPN is modulated by the focus of spatial attention.
View Article and Find Full Text PDFReflectional (mirror) symmetry is an important visual cue for perceptual organization. The brain processes symmetry rapidly and efficiently. Previous work suggests that symmetry activates the extrastriate cortex and generates an event related potential (ERP) called the Sustained Posterior Negativity (SPN).
View Article and Find Full Text PDFPrevious work has found that feature attention can modulate electrophysiological responses to visual symmetry. In the current study, participants observed spatially overlapping clouds of black and white dots. They discriminated vertical symmetry from asymmetry in the target dots (e.
View Article and Find Full Text PDFIt is now possible for scientists to publicly catalogue all the data they have ever collected on one phenomenon. For a decade, we have been measuring a brain response to visual symmetry called the sustained posterior negativity (SPN). Here we report how we have made a total of 6674 individual SPNs from 2215 participants publicly available, along with data extraction and visualization tools (https://osf.
View Article and Find Full Text PDFExtrastriate visual areas are strongly activated by image symmetry. Less is known about symmetry representation at object-level rather than image-level. Here we investigated electrophysiological responses to symmetry, generated by amodal completion of partially-occluded polygon shapes.
View Article and Find Full Text PDFHuman perception of symmetry is associated with activation in an extended network of extrastriate visual areas. This activation generates an ERP called the Sustained Posterior Negativity (SPN). In most studies so far, the stimuli have been defined by luminance.
View Article and Find Full Text PDFPsychophysiology
December 2021
An Event Related Potential response to visual symmetry, known as the Sustained Posterior Negativity (SPN), is generated whether symmetry is task relevant or not, and whether symmetry is attended or not. However, no study has yet examined interference from concurrent memory tasks. To answer this fundamental question, we investigated whether the SPN is robust to variation in Visual Working Memory (VWM) load.
View Article and Find Full Text PDFVision Res
November 2021
In humans, extrastriate visual areas are strongly activated by symmetry. However, perfect symmetry is rare in natural visual images. Recent findings showed that when parts of a symmetric shape are presented at different points in time the process relies on a perceptual memory buffer.
View Article and Find Full Text PDFAn Event Related Potential (ERP) component called the Sustained Posterior Negativity (SPN) is generated by regular visual patterns (e.g. vertical reflectional symmetry, horizontal reflectional symmetry or rotational symmetry).
View Article and Find Full Text PDFResearch into the neural basis of symmetry perception has intensified in the last two decades; however, the functional role of neural oscillations remains unclear. In previous work Makin et al. (2014, Journal of Vision, 14, 1-12) and Wright et al.
View Article and Find Full Text PDFPrevious work has shown that symmetrical stimuli are judged as lasting longer than asymmetrical ones, even when actual duration is matched. This effect has been replicated with different methods and stimuli types. We aimed to a) replicate the effect of symmetry on subjective duration, and b) assess whether it was further modulated by the number of symmetrical axes.
View Article and Find Full Text PDFVisual symmetry perception and symmetry preference have been studied extensively. However, less is known about how people spontaneously scan symmetrical stimuli with their eyes. We thus examined spontaneous saccadic eye movements when participants ( = 20) observed patterns with horizontal or vertical mirror reflection.
View Article and Find Full Text PDFNeurophysiological studies have shown a strong activation in visual areas in response to symmetry. Electrophysiological (EEG) studies, in particular, have confirmed that amplitude at posterior electrodes is more negative for symmetrical compared to asymmetrical patterns. This response is present even when observers perform tasks that do not require processing of symmetry.
View Article and Find Full Text PDFIt is known that the extrastriate cortex is activated by visual symmetry. This activation generates an ERP component called the Sustained Posterior Negativity (SPN). SPN amplitude increases (i.
View Article and Find Full Text PDFPrevious research has investigated the neural response to visual symmetry. It is well established that symmetry activates a network of extrastriate visual regions, including V4 and the Lateral Occipital Complex. This symmetry response generates an event-related potential called the sustained posterior negativity (SPN).
View Article and Find Full Text PDFThe holographic weight of evidence model (van der Helm & Leeuwenberg, J Math Psychol, 35, 1991, 151; van der Helm & Leeuwenberg, Psychol Rev, 103, 1996, 429) estimates that the perceptual goodness of moiré structures (Glass patterns), irrespective of their global form, is comparable to that of reflection symmetry. However, both behavioural and neuroscience evidences suggest that certain Glass forms (i.e.
View Article and Find Full Text PDFThe brain can organize elements into perceptually meaningful gestalts. Visual symmetry is a useful tool to study gestalt formation, and we know that there are symmetry-sensitive regions in the extrastriate cortex. However, it is unclear whether symmetrical gestalt formation happens automatically, whatever the participant's current task is.
View Article and Find Full Text PDFPeople can quickly detect bilateral reflection in an image. This is true when elements of the same luminance are matched on either side of the axis (symmetry) and when they have opposite luminance polarity (anti-symmetry). Using electroencephalography, we measured the well-established sustained posterior negativity (SPN) response to symmetry and anti-symmetry.
View Article and Find Full Text PDFMost people like symmetry, and symmetry has been extensively used in visual art and architecture. In this study, we compared preference for images of abstract and familiar objects in the original format or when containing perfect bilateral symmetry. We created pairs of images for different categories: male faces, female faces, polygons, smoothed version of the polygons, flowers, and landscapes.
View Article and Find Full Text PDF