Publications by authors named "Alessio Malcevschi"

Biochar is currently garnering interest as an alternative to commercial fertilizer and as a tool to counteract global warming. However, its use is increasingly drawing attention, particularly concerning the fine dust that can be developed during its manufacture, transport, and use. This work aimed to assess the toxicity of fine particulate Biochar ( View Article and Find Full Text PDF

Biochar (BC) boasts diverse environmental applications. However, its potential for environmental biomonitoring has, surprisingly, remained largely unexplored. This study presents a preliminary analysis of BC's potential as a biomonitor for the environmental availability of ionic Cd, utilizing the lichen (L.

View Article and Find Full Text PDF

Biochar (BC) soil amendments could partially counteract soil carbon (C) stock decrease in broad-leaved forests in Italy; however, its effects on the growth of representative tree species—Fagus sylvatica L. and Quercus cerris L.—has not yet been addressed.

View Article and Find Full Text PDF

Biochar is recognized as an efficient amendment and soil improver. However, environmental and quality assessments are needed to ensure the sustainability of its use in agriculture. This work considers the biochar's chemical-physical characterization and its potential phyto- and geno-toxicity, assessed with germination and Ames tests, obtaining valuable information for a safe field application.

View Article and Find Full Text PDF

Potential harmful effects of spent coffee grounds (SCGs)-derived biochar on earthworms (Lumbricus terrestris) were investigated through two complementary experiments, which assessed the avoidance response of earthworms to biochar-amended soils (experiment 1), and the response of oxidative stress biomarkers and digestive enzymes (experiment 2). The main results were: 1) the highest dose of biochar (5% w/w) caused a significant avoidance response of earthworms (75% individuals avoided these treated soils after 48 h); 2) signs of oxidative stress were early detected in earthworms exposed to biochar (1 and 5% w/w) as indicated by the integrated biological response index; 3) earthworms exposed to biochar-amended soils for 30 d experienced a significant increase of digestive enzyme activities measured in both the gastrointestinal tissue and the luminal content; 4) interaction between earthworms and biochar led to a higher soil extracellular enzyme activities in the 1% biochar treatment than that of control and 5% biochar treatments. These findings suggest that the joint application of SCG-biochar and L.

View Article and Find Full Text PDF

Biochar is a product of the thermal decomposition of biomass under a limited supply of oxygen and can be deriving from pyrolysis or gasification. As the product is rich in highly recalcitrant carbon, it has been proposed as a soil amendment to improve soil fertility and to stock carbon in soils. However, the contaminant compounds present in biochar could represent potential environmental threats.

View Article and Find Full Text PDF

Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L.

View Article and Find Full Text PDF

This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed.

View Article and Find Full Text PDF

Bioremediation of toluene and naphthalene in liquid cultures of bacteria grown in the presence of these aromatic compounds as unique sources of carbon was investigated by gas chromatography (GC). For this purpose, a method based on the use of GC with flame ionization detection was developed and validated. Validation was carried out in terms of limit of detection (LOD), limit of quantitation (LOQ), linearity, precision and trueness.

View Article and Find Full Text PDF