In a rapidly changing environment, predicting changes in the growth and survival of local populations can inform conservation and management. Plastic responses vary as a result of genetic differentiation within and among species, so accurate rangewide predictions require characterization of genotype-specific reaction norms across the continuum of historic and future climate conditions comprising a species' range. Natural hybrid zones can give rise to novel recombinant genotypes associated with high phenotypic variability, further increasing the variance of plastic responses within the ranges of the hybridizing species.
View Article and Find Full Text PDFTree species are often locally adapted to their environments, but the extent to which environmental adaptation contributes to incipient speciation is unclear. One of the rarest pines in the world, Torrey pine ( Parry), persists naturally across one island and one mainland population in southern California. The two populations are morphologically and genetically differentiated but experience some connectivity, making it an ideal system for assessing the evolution of reproductive isolation.
View Article and Find Full Text PDFManagement strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies. , or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico.
View Article and Find Full Text PDFIsland oak (Quercus tomentella) is a rare relictual island tree species that exists only on six islands off the coast of California and Mexico, but was once widespread throughout mainland California. Currently, this species is endangered by threats such as non-native plants, grazing animals, and human removal. Efforts for conservation and restoration of island oak currently underway could benefit from information about its range-wide genetic structure and evolutionary history.
View Article and Find Full Text PDFJuglans californica, California walnut, is a vulnerable small tree that is locally abundant but restricted to woodland and chaparral habitats of Southern California threatened by urbanization and land use change. This species is the dominant species in a unique woodland ecosystem in California. It is one of 2 endemic California walnut species (family Juglandaceae).
View Article and Find Full Text PDFEpigenetic modifications such as DNA methylation, where methyl groups are added to cytosine base pairs, have the potential to impact phenotypic variation and gene expression, and could influence plant response to changing environments. One way to test this impact is through the application of chemical demethylation agents, such as 5-Azacytidine, which inhibit DNA methylation and lead to a partial reduction in DNA methylation across the genome. In this study, we treated 5-month-old seedlings of the tree, , with foliar application of 5-Azacytidine to test whether a reduction in genome-wide methylation would cause differential gene expression and change phenotypic development.
View Article and Find Full Text PDFDrought is a major stress for plants, creating a strong selection pressure for traits that enable plant growth and survival in dry environments. Many drought responses are conserved species-wide responses, while others vary among populations distributed across heterogeneous environments. We tested how six populations of the widely distributed California valley oak (Quercus lobata) sampled from contrasting climates would differ in their response to soil drying relative to well-watered controls in a common environment by measuring ecophysiological traits in 93 individuals and gene expression (RNA-seq) in 42 individuals.
View Article and Find Full Text PDF