J Clin Invest
August 2024
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells.
View Article and Find Full Text PDFFront Immunol
January 2024
Cell Metab
January 2024
Glioblastoma (GBM) is a malignancy dominated by the infiltration of tumor-associated myeloid cells (TAMCs). Examination of TAMC metabolic phenotypes in mouse models and patients with GBM identified the de novo creatine metabolic pathway as a hallmark of TAMCs. Multi-omics analyses revealed that TAMCs surround the hypoxic peri-necrotic regions of GBM and express the creatine metabolic enzyme glycine amidinotransferase (GATM).
View Article and Find Full Text PDFA paucity of chemotherapeutic options for metastatic brain cancer limits patient survival and portends poor clinical outcomes. Using a CNS small-molecule inhibitor library of 320 agents known to be blood-brain barrier permeable and approved by the FDA, we interrogated breast cancer brain metastasis vulnerabilities to identify an effective agent. Metixene, an antiparkinsonian drug, was identified as a top therapeutic agent that was capable of decreasing cellular viability and inducing cell death across different metastatic breast cancer subtypes.
View Article and Find Full Text PDFAs a key component of the standard of care for glioblastoma, radiotherapy induces several immune resistance mechanisms, such as upregulation of CD47 and PD-L1. Here, leveraging these radiotherapy-elicited processes, we generate a bridging-lipid nanoparticle (B-LNP) that engages tumor-associated myeloid cells (TAMCs) to glioblastoma cells via anti-CD47/PD-L1 dual ligation. We show that the engager B-LNPs block CD47 and PD-L1 and promote TAMC phagocytic activity.
View Article and Find Full Text PDFImmunotherapy has revolutionized cancer treatment but has yet to be translated into brain tumors. Studies in other solid tumors suggest a central role of B-cell immunity in driving immune-checkpoint-blockade efficacy. Using single-cell and single-nuclei transcriptomics of human glioblastoma and melanoma brain metastasis, we found that tumor-associated B-cells have high expression of checkpoint molecules, known to block B-cell-receptor downstream effector function such as plasmablast differentiation and antigen-presentation.
View Article and Find Full Text PDFThe NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation.
View Article and Find Full Text PDFMalignant brain tumors, such as glioblastoma multiforme (GBM) and brain metastases, continue to be an unmet medical challenge. Despite advances in cancer diagnostics and therapeutics, tumor cell colonization in the central nervous system renders most treatment options ineffective. This is primarily due to the selective permeability of the blood-brain barrier (BBB), which hinders the crossing of targeting agents into the brain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
Brain metastases are a leading cause of death in patients with breast cancer. The lack of clinical trials and the presence of the blood-brain barrier limit therapeutic options. Furthermore, overexpression of the human epidermal growth factor receptor 2 (HER2) increases the incidence of breast cancer brain metastases (BCBM).
View Article and Find Full Text PDFGlioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8 T cells.
View Article and Find Full Text PDFImmunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNγ stimulation.
View Article and Find Full Text PDFBrain metastasis is an important cause of mortality in patients with cancer and represents the majority of all intracranial tumors. A key step during the metastatic journey of the cancer cell to the brain is the invasion through the blood-brain barrier (BBB). Nevertheless, the molecular mechanisms that govern this process remain unknown.
View Article and Find Full Text PDFInt J Cancer
October 2020
Combination therapy has become a cornerstone in cancer treatment to potentiate therapeutic effectiveness and overcome drug resistance and metastasis. In this work, we explore combination trials in breast cancer brain metastasis (BCBM), highlighting deficiencies in trial design and underlining promising combination strategies. On October 31, 2019, we examined ClinicalTrials.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2020
Amino acid deprivation is a strategy that malignancies utilize to blunt anti-tumor T-cell immune responses. It has been proposed that amino acid insufficiency in T-cells is detected by GCN2 kinase, which through phosphorylation of EIF2α, shuts down global protein synthesis leading to T-cell arrest. The role of this amino acid stress sensor in the context of malignant brain tumors has not yet been studied, and may elucidate important insights into the mechanisms of T-cell survival in this harsh environment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2019
Tumor-associated myeloid cells (TAMCs) are key drivers of immunosuppression in the tumor microenvironment, which profoundly impedes the clinical response to immune-dependent and conventional therapeutic modalities. As a hallmark of glioblastoma (GBM), TAMCs are massively recruited to reach up to 50% of the brain tumor mass. Therefore, they have recently been recognized as an appealing therapeutic target to blunt immunosuppression in GBM with the hope of maximizing the clinical outcome of antitumor therapies.
View Article and Find Full Text PDFBackground: Breast cancer brain metastases (BCBM) are the final frontier in neuro-oncology for which more efficacious therapies are required. In this work, we explore clinical trials in BCBM, and determine the shortcomings in the development of new BCBM therapies to shed light on potential areas for enhancement.
Methods: On July 9, 2018, we searched ClinicalTrials.
Cancer Immunol Res
December 2019
The potent immunosuppression induced by glioblastoma (GBM) is one of the primary obstacles to finding effective immunotherapies. One hallmark of the GBM-associated immunosuppressive landscape is the massive infiltration of myeloid-derived suppressor cells (MDSC) and, to a lesser extent, regulatory T cells (Treg) within the tumor microenvironment. Here, we showed that regulatory B cells (Breg) are a prominent feature of the GBM microenvironment in both preclinical models and clinical samples.
View Article and Find Full Text PDFClin Breast Cancer
December 2019
Optimal treatment of breast cancer brain metastases (BCBM) is often hampered by limitations in diagnostic abilities. Developing innovative tools for BCBM diagnosis is vital for early detection and effective treatment. In this study we explored the advances in trial for the diagnosis of BCBM, with review of the literature.
View Article and Find Full Text PDFThe mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8 T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors.
View Article and Find Full Text PDFAlthough radiotherapy has been established as a major therapeutic modality for glioma, radical new avenues are critically needed to prevent inevitable tumor recurrence. Herein, we utilized a magnetic nanoparticle-based platform with cationic polymer modification to promote radiotherapy for glioma treatment. We found that the nanoplatform induced cytotoxicity to glioma cells under radiation as well as promoting significant survival benefits in both immunocompetent and aythmic mice with glioma.
View Article and Find Full Text PDFThe immunosuppressive microenvironment is one of the major factors promoting the growth of glioblastoma multiforme (GBM). Infiltration of CD4CD25Foxp3 regulatory T cells (Tregs) into the tumor microenvironment plays a significant role in the suppression of the anti-tumor immunity and portends a dismal prognosis for patients. Glioma-mediated secretion of chemo-attractant C-C motif ligand 2 and 22 (CCL2/22) has previously been shown by our group to promote Treg migration in vitro.
View Article and Find Full Text PDFAntitumor immunotherapeutic strategies represent an especially promising set of approaches with rapid translational potential considering the dismal clinical context of high-grade gliomas. Dendritic cells (DCs) are the body's most professional antigen-presenting cells, able to recruit and activate T cells to stimulate an adaptive immune response. In this regard, specific loading of tumor-specific antigen onto dendritic cells potentially represents one of the most advanced strategies to achieve effective antitumor immunization.
View Article and Find Full Text PDFGlioblastoma is a highly aggressive malignant brain tumor with a poor prognosis and the median survival 14.6 months. Immunomodulatory proteins and oncolytic viruses represent two treatment approaches that have recently been developed for patients with glioblastoma that could extend patient survival and result in better treatment outcomes for patients with this disease.
View Article and Find Full Text PDFFatty acid (FA) metabolism directly influences the functional capabilities of T cells in tumor microenvironments. Thus, developing tools to interrogate FA-uptake by T cell subsets is important for understanding tumor immunosuppression. Herein, we have generated a novel FA-Qdot 605 dye conjugate with superior sensitivity and flexibility to any of the previously commercially available alternatives.
View Article and Find Full Text PDF