Publications by authors named "Adrian Joseph"

In the production of biopharmaceuticals depth filters followed by sterile filters are often employed to remove residual cell debris present in the feed stream. In the back drop of a global pandemic, supply chains associated with the production of biopharmaceuticals have been constrained. These constraints have limited the available amount of depth filters for the manufacture of biologics.

View Article and Find Full Text PDF

We investigated how the shape of polymeric vesicles, made by the exact same material, impacts the replication activity and metabolic state of both cancer and non-cancer cell types. First, we isolated discrete geometrical structures (spheres and tubes) from a heterogeneous sample using density-gradient centrifugation. Then, we characterized the cellular internalization and the kinetics of uptake of both types of polymersomes in different cell types (either cancer or non-cancer cells).

View Article and Find Full Text PDF

In recent years, scientists have created artificial microscopic and nanoscopic self-propelling particles, often referred to as nano- or microswimmers, capable of mimicking biological locomotion and taxis. This active diffusion enables the engineering of complex operations that so far have not been possible at the micro- and nanoscale. One of the most promising tasks is the ability to engineer nanocarriers that can autonomously navigate within tissues and organs, accessing nearly every site of the human body guided by endogenous chemical gradients.

View Article and Find Full Text PDF

Cell harvesting is the separation or retention of cells and cellular debris from the supernatant containing the target molecule Selection of harvest method strongly depends on the type of cells, mode of bioreactor operation, process scale, and characteristics of the product and cell culture fluid. Most traditional harvesting methods use some form of filtration, centrifugation, or a combination of both for cell separation and/or retention. Filtration methods include normal flow depth filtration and tangential flow microfiltration.

View Article and Find Full Text PDF
Article Synopsis
  • Continuous disk-stack centrifugation is essential for removing cells and debris in mammalian cell culture, and scale-down methods help optimize this process with less material.
  • A new automated capillary-based method simulates Energy Dissipation Rates (EDRs) found in large centrifuges, allowing for better performance analysis.
  • This approach can be integrated into existing methods to assess factors like culture time and temperature, significantly enhancing the understanding of centrifuge operation and efficiency.
View Article and Find Full Text PDF

Ki-67 is a nuclear protein that has been used in cancer diagnostic because of its specific cell-cycle dependent expression profile. After quantifying and characterising the expression level of Ki-67, as a function of the cell cycle, we found out that the two main splice variants of the protein (i.e.

View Article and Find Full Text PDF

Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions.

View Article and Find Full Text PDF

In the production of biopharmaceuticals disk-stack centrifugation is widely used as a harvest step for the removal of cells and cellular debris. Depth filters followed by sterile filters are often then employed to remove residual solids remaining in the centrate. Process development of centrifugation is usually conducted at pilot-scale so as to mimic the commercial scale equipment but this method requires large quantities of cell culture and significant levels of effort for successful characterization.

View Article and Find Full Text PDF

Pegylation of nanoparticles has been widely implemented in the field of drug delivery to prevent macrophage clearance and increase drug accumulation at a target site. However, the shielding effect of polyethylene glycol (PEG) is usually incomplete and transient, due to loss of nanoparticle integrity upon systemic injection. Here, we have synthesized unique PEG-dendron-phospholipid constructs that form super stealth liposomes (SSLs).

View Article and Find Full Text PDF

We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane.

View Article and Find Full Text PDF