Nectar, a vital mediator of plant-pollinator interactions, exhibits remarkable chemical diversity beyond sugars, including reactive oxygen species and specialized metabolites such as pigments. Colored nectars, present in over 70 species, function as visual signals, inhibitors of microbial growth, or nutritional rewards, underscoring their ecological importance. Reactive oxygen species contribute to pigment formation and nectar stability, highlighting their dual roles in nectar chemistry and defense.
View Article and Find Full Text PDFDNA adducts are central in the carcinogenic process because they can cause miscoding leading to permanent mutations in important genes involved in carcinogenesis. While it is known that tobacco smoking leads to increased levels of multiple DNA adducts, most DNA adducts detected to date in humans cannot be explicitly attributed to smoking but instead have various possible exogenous and endogenous sources. We plan to probe the tobacco source of DNA adducts by providing carbon-13 labelled ([13C]-labelled) cigarettes to smokers and analyzing [13C]-labelled DNA adducts in their oral cells to determine which adducts arise from smoking.
View Article and Find Full Text PDFWater availability is a major determinant of crop production, and rising temperatures from climate change are leading to more extreme droughts. To combat the effects of climate change on crop yields, we need to develop varieties that are more tolerant to water-limited conditions. We aimed to determine how diverse crop types (winter/spring oilseed, tuberous, and leafy) of the allopolyploid Brassica napus, a species that contains the economically important rapeseed oilseed crop, respond to prolonged water limitation.
View Article and Find Full Text PDFACS Meas Sci Au
August 2024
J Agric Food Chem
July 2024
Cigarette smoking is the acknowledged major cause of cancers of the lung and oral cavity and is an established important risk factor for multiple other cancers. DNA addition products (DNA adducts) caused by cigarette smoking are critical factors in its mechanism of carcinogenesis. However, most DNA adducts detected to date in humans cannot be specifically ascribed to smoking but rather have multiple exogenous and endogenous sources.
View Article and Find Full Text PDFGlobal warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in seedlings using N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the algorithm.
View Article and Find Full Text PDFA few Capsicum (pepper) species produce yellow-colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown. A combination of analytical biochemistry techniques was used to identify the pigment that gives Capsicum baccatum and Capsicum pubescens nectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment.
View Article and Find Full Text PDFA prevalent side-reaction of succinate dehydrogenase oxidizes malate to enol-oxaloacetate (OAA), a metabolically inactive form of OAA that is a strong inhibitor of succinate dehydrogenase. We purified from cow heart mitochondria an enzyme (OAT1) with OAA tautomerase (OAT) activity that converts enol-OAA to the physiological keto-OAA form, and determined that it belongs to the highly conserved and previously uncharacterized Fumarylacetoacetate_hydrolase_domain-containing protein family. From all three domains of life, heterologously expressed proteins were shown to have strong OAT activity, and ablating the OAT1 homolog caused significant growth defects.
View Article and Find Full Text PDFThe black nectar produced by Melianthus flowers is thought to serve as a visual attractant to bird pollinators, but the chemical identity and synthesis of the black pigment are unknown. A combination of analytical biochemistry, transcriptomics, proteomics, and enzyme assays was used to identify the pigment that gives Melianthus nectar its black color and how it is synthesized. Visual modeling of pollinators was also used to infer a potential function of the black coloration.
View Article and Find Full Text PDFMethods Enzymol
October 2022
The plant hormone auxin plays important roles throughout the entire life span of a plant and facilitates its adaptation to a changing environment. Multiple metabolic pathways intersect to control the levels and flux through indole-3-acetic acid (IAA), the primary auxin in most plant species. Measurement of changes in these pathways represents an important objective to understanding core aspects of auxin signal regulation.
View Article and Find Full Text PDFDevelopmental plasticity can alter the expression of sexual signals in novel environments and is therefore thought to play an important role in promoting divergence. Sexual signals, however, are often multimodal and mate choice multivariate. Hence, to understand how developmental plasticity can facilitate divergence, we must assess plasticity across signal components and its cumulative impact on signalling.
View Article and Find Full Text PDFTemperature, water, and light are three abiotic stress factors that have major influences on plant growth, development, and reproduction. Plants can be primed by a prior mild stress to enhance their resistance to future stress. We used an untargeted metabolomics approach to examine Arabidopsis thaliana 11-day-old seedling's abiotic stress responses including heat (with and without priming), cold (with and without priming), water-deficit and high-light before and after a 2-day-recovery period.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation.
View Article and Find Full Text PDFEnzymes catalyze reactions in vivo at different rates and each enzyme molecule has a lifetime limit before it is degraded and replaced to enable catalysis to continue. Considering these rates together as a unitless ratio of catalytic cycles until replacement (CCR) provides a new quantitative tool to assess the replacement schedule of and energy investment into enzymes as they relate to function. Here, we outline the challenges of determining CCRs and new approaches to overcome them and then assess the CCRs of selected enzymes in bacteria and plants to reveal a range of seven orders of magnitude for this ratio.
View Article and Find Full Text PDFGrapevine ( spp.) contains a wealth of phytochemicals that have received considerable attention due to health-promoting properties and biological activities as phytoalexins. To date, the genetic basis of the quantitative variations for these potentially beneficial compounds has been limited.
View Article and Find Full Text PDFIntroduction: Van Krevelen (VK) diagrams provide a promising but uncommon solution to a number of challenges associated with the visualization of metabolomics data. VK diagrams are created by plotting H:C ratios against O:C ratios of the compounds in a chemical mixture.
Objectives: The aim of this manuscript is to present an open-source software tool and reference map that we have developed to make VK diagrams for visualization of metabolomics data.
Galaxy provides an accessible platform where multi-step data analysis workflows integrating disparate software can be run, even by researchers with limited programming expertise. Applications of such sophisticated workflows are many, including those which integrate software from different 'omic domains (e.g.
View Article and Find Full Text PDFPlants produce thousands of small molecules that are diverse in their chemical properties. Mass spectrometry (MS) is a powerful technique for analyzing plant metabolites because it provides molecular weights with high sensitivity and specificity. Leaf spray MS is an ambient ionization technique where plant tissue is used for direct chemical analysis via electrospray, eliminating chromatography from the process.
View Article and Find Full Text PDFIn vivo isotopic labeling empowers proteomic and metabolomic analyses to resolve relationships between the molecular composition, environment, and phenotype of an organism. Carbon-13 is particularly useful for plant labeling as it can be introduced via CO gas and readily assimilated into plant metabolic systems through natural carbon fixation. While short-term labeling experiments can be performed within a simple sealed enclosure, long-term growth in an isolated environment raises many challenges beyond nutrient availability and buildup of metabolic waste.
View Article and Find Full Text PDFIn this study we describe a [N] stable isotopic labeling study of amino acids in (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2017
Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical modifications. Carotenoids are important because of their potent antioxidant activity and are the pigments responsible for color in a wide variety of foods.
View Article and Find Full Text PDFLeaf spray-MS minimizes tissue manipulation by effectively and quickly assessing in vivo specialized metabolites from intact plant tissue surfaces, including trichome metabolites. Intact leaves of Glycyrrhiza lepidota Pursh. (American licorice) were analyzed by direct electrospray leaf spray-MS, an ambient ionization technique.
View Article and Find Full Text PDFHoney bees, Apis mellifera, collect antimicrobial plant resins from the environment and deposit them in their nests as propolis. This behavior is of practical concern to beekeepers since the presence of propolis in the hive has a variety of benefits, including the suppression of disease symptoms. To connect the benefits that bees derive from propolis with particular resinous plants, we determined the identity and botanical origin of propolis compounds active against bee pathogens using bioassay-guided fractionation against the bacterium Paenibacillus larvae, the causative agent of American foulbrood.
View Article and Find Full Text PDFCurr Opin Biotechnol
February 2017
Methods employing isotope labeled compounds have been an important part of the bioanalytical canon for many decades. The past fifteen years have seen the development of many new approaches using stable (non-radioactive) isotopes as labels for high-throughput bioanalytical, 'omics-scale' measurements of metabolites (metabolomics) and proteins (proteomics). This review examines stable isotopic labeling approaches that have been developed for labeling whole intact plants, plant tissues, or crude extracts of plant materials with stable isotopes (mainly using H, C, N, O or S).
View Article and Find Full Text PDF