BMC Mol Cell Biol
August 2019
Background: The EP prostanoid receptor is one of four GPCRs that mediate the diverse actions of prostaglandin E (PGE). Novel selective EP receptor agonists would assist to further elucidate receptor sub-type function and promote development of therapeutics for bone healing, heart failure, and other receptor associated conditions. The rat EP (rEP) receptor has been used as a surrogate for the human EP (hEP) receptor in multiple SAR studies.
View Article and Find Full Text PDFChemMedChem
August 2019
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety.
View Article and Find Full Text PDFA series of small-molecule full agonists of the prostaglandin E type 4 (EP) receptor have been generated and evaluated for binding affinity and cellular potency. KMN-80 and its gem-difluoro analog KMN-159 possess high selectivity relative to other prostanoid receptors. Difluoro substitution is positioned alpha to the lactam ring carbonyl and results in KMN-159's fivefold increase in potency versus KMN-80.
View Article and Find Full Text PDFPancreatic cancer cells are characterized by deregulated metabolic programs that facilitate growth and resistance to oxidative stress. Among these programs, pancreatic cancers preferentially utilize a metabolic pathway through the enzyme aspartate aminotransferase 1 [also known as glutamate oxaloacetate transaminase 1 (GOT1)] to support cellular redox homeostasis. As such, small molecule inhibitors that target GOT1 could serve as starting points for the development of new therapies for pancreatic cancer.
View Article and Find Full Text PDFGlycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/β inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent β-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of β-catenin are associated with many cancers.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2017
As a follow-up to the discovery of our spirocyclic proline-based TPH1 inhibitor lead, we describe the optimization of this scaffold. Through a combination of X-ray co-crystal structure guided design and an in vivo screen, new substitutions in the lipophilic region of the inhibitors were identified. This effort led to new TPH1 inhibitors with in vivo efficacy when dosed as their corresponding ethyl ester prodrugs.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
January 2017
Autotaxin (ATX) is a secreted glycoprotein that converts lysophosphatidylcholine (LPC) to the bioactive phospholipid lysophosphatidic acid (LPA) and is the major enzyme generating circulating LPA. Inhibition of LPA signaling has profound antifibrotic effects in multiple organ systems, including lung, kidney, skin, and peritoneum. However, other LPA-generating pathways exist, and the role of ATX in localized tissue LPA production and fibrosis remains unclear and controversial.
View Article and Find Full Text PDFBioorg Med Chem Lett
June 2016
An increasing number of diseases have been linked to a dysfunctional peripheral serotonin system. Given that tryptophan hydroxylase 1 (TPH1) is the rate limiting enzyme in the biosynthesis off serotonin, it represents an attractive target to regulate peripheral serotonin. Following up to our first disclosure, we report a new chemotype of TPH1 inhibitors where-by the more common central planar heterocycle has been replaced with an open-chain, acyl guanidine surrogate.
View Article and Find Full Text PDFAutotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is a bioactive phospholipid that regulates diverse biological processes, including cell proliferation, migration, and survival/apoptosis, through the activation of a family of G protein-coupled receptors. The ATX-LPA pathway has been implicated in many pathologic conditions, including cancer, fibrosis, inflammation, cholestatic pruritus, and pain.
View Article and Find Full Text PDFIsocitrate dehydrogenase kinase/phosphatase (AceK) regulates entry into the glyoxylate bypass by reversibly phosphorylating isocitrate dehydrogenase (ICDH). On the basis of the recently determined structure of the AceK-ICDH complex from Escherichia coli, we have classified the structures of homodimeric NADP(+)-ICDHs to rationalize and predict which organisms likely contain substrates for AceK. One example is Burkholderia pseudomallei (Bp).
View Article and Find Full Text PDFNat Struct Mol Biol
November 2006
The Ro autoantigen is ring-shaped, binds misfolded noncoding RNAs and is proposed to function in quality control. Here we determine how Ro interacts with misfolded RNAs. Binding of Ro to misfolded precursor (pre)-5S ribosomal RNA requires a single-stranded 3' end and helical elements.
View Article and Find Full Text PDFThe Ro 60 kDa autoantigen is a major target of the immune response in patients with systemic lupus erythematosus. In vertebrate cells, Ro binds misfolded small RNAs and likely functions in RNA quality control. In eukaryotes and bacteria, Ro also associates with small RNAs called Y RNAs.
View Article and Find Full Text PDFJ Biol Chem
March 2002
1-l-myo-Inositol-1-phosphate synthase catalyzes the conversion of d-glucose 6-phosphate to 1-l-myo-inositol-1-phosphate (MIP), the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. It involves an oxidation, intramolecular aldol cyclization, and reduction. We have determined the first crystal structure of MIP synthase.
View Article and Find Full Text PDF