Sensors (Basel)
January 2021
In this work, a TiO-coated GaN nanowire-based back-gate field-effect transistor (FET) device was designed and implemented to address the well-known cross-sensitive nature of metal oxides. Even though a two-terminal TiO/GaN chemiresistor is highly sensitive to NO, it suffers from lack of selectivity toward NO and SO. Here, a Si back gate with C-AlGaN as the gate dielectric was demonstrated as a tunable parameter, which enhances discrimination of these cross-sensitive gases at room temperature (20 °C).
View Article and Find Full Text PDFInternet of Things applications require ultra-low power, integrable into electronic circuits and mini-sized chemical sensors for automated remote air quality monitoring system. In this work, a highly sensitive and selective detection of nitrogen dioxide (NO) has been demonstrated by functionalizing gallium nitride (GaN) submicron wire with titania (TiO) nanoclusters. The two-terminal GaN/TiO sensor device was fabricated by top-down approach.
View Article and Find Full Text PDFAdv Electron Mater
September 2016
The need for low-cost high-performance broadband photon detection with sensitivity in the near infrared (NIR) has driven interest in new materials that combine high absorption with traditional electronic infrastructure (CMOS) compatibility. Here, we demonstrate a facile, low-cost and scalable, catalyst-free one-step solution-processed approach to grow one-dimensional SbSe nanostructures directly on flexible substrates for high-performance NIR photodetectors. Structural characterization and compositional analyses reveal high-quality single-crystalline material with orthorhombic crystal structure and a near-stoichiometric Sb/Se atomic ratio.
View Article and Find Full Text PDFA self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V.
View Article and Find Full Text PDFJ Alloys Compd
December 2015
TiO thin film based, chemiresistive sensors for NO gas which operate at room temperature under ultraviolet (UV) illumination have been demonstrated in this work. The rf-sputter deposited and post-annealed TiO thin films have been characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction to obtain surface morphology, chemical state, and crystal structure, respectively. UV-vis absorption spectroscopy and Tauc plots show the optical properties of the TiO films.
View Article and Find Full Text PDFAppl Phys Lett
December 2015
We report on the significant performance enhancement of SnO thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2015
Solution-processed p-n heterojunction photodiodes have been fabricated based on transition-metal oxides in which NiO and ternary Zn(1-x)Mg(x)O (x = 0-0.1) have been employed as p-type and n-type semiconductors, respectively. Composition-related structural, electrical, and optical properties are also investigated for all the films.
View Article and Find Full Text PDFWe have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device.
View Article and Find Full Text PDFWe demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique.
View Article and Find Full Text PDFNanotechnology
November 2011
We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD).
View Article and Find Full Text PDFNanowire-nanocluster hybrid chemical sensors were realized by functionalizing gallium nitride (GaN) nanowires (NWs) with titanium dioxide (TiO(2)) nanoclusters for selectively sensing benzene and other related aromatic compounds. Hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) nanoclusters using RF magnetron sputtering. The sensor fabrication process employed standard microfabrication techniques.
View Article and Find Full Text PDFUnderstanding the electrical and microstructural aspects of contact formation at nanoscale is essential for the realization of low-resistance metallization suitable for the next generation of nanowire based devices. In this study, we present detailed electrical and microstructural characteristics of Ti/Al/Ti/Au metal contacts to p-type Si nanowires (SiNWs) annealed at various temperatures. Focused ion beam cross-sectioning techniques and scanning transmission electron microscopy (STEM) were used to determine the microstructure of the source/drain metal contacts of working SiNW field-effect transistors (FETs) annealed for 30 s in the 450-850 °C temperature range in inert atmosphere.
View Article and Find Full Text PDFThe fundamentals of phase separations of single-crystal III-V nitride nanowires grown by self-catalytic chemical vapor deposition method have been studied. Experimental tools, such as high resolution transmission electron microscopy and scanning electron microscopy, have been used to characterize the nanowires. The study indicates that nanowires with diameters exceeding about 100 nm undergo phase transitions and/or crystal structure deterioration.
View Article and Find Full Text PDFMetal/semiconductor (MS) heterostructure is of wide interest in a number of areas including physics, chemistry, materials science, materials engineering, chemical engineering, and electrical engineering. It is an important element of modern technology. The present investigation describes a novel experimental technique to address the influence of interfacial chemical passivation on the Schottky-Mott [Naturwiss.
View Article and Find Full Text PDF