Publications by authors named "Aaron G Smith"

Phenotypic plasticity drives cancer progression, impacts treatment response, and is a major driver of therapeutic resistance. In melanoma, a regulatory axis between the MITF and BRN2 transcription factors has been reported to promote tumor heterogeneity by mediating switching between proliferative and invasive phenotypes, respectively. Despite strong evidence that subpopulations of cells that exhibit a BRN2/MITF expression profile switch to a predominantly invasive phenotype, the mechanisms by which this switch is propagated and promotes invasion remain poorly defined.

View Article and Find Full Text PDF

Significance: Peripheral pitting edema is a clinician-administered measure for grading edema. Peripheral edema is graded 0, 1  +  , 2  +  , 3  +  , or 4  +  , but subjectivity is a major limitation of this technique. A pilot clinical study for short-wave infrared (SWIR) molecular chemical imaging (MCI) effectiveness as an objective, non-contact quantitative peripheral edema measure is underway.

View Article and Find Full Text PDF

Growth hormone (GH) has an important function as an insulin antagonist with elevated insulin sensitivity evident in humans and mice lacking a functional GH receptor (GHR). We sought the molecular basis for this sensitivity by utilizing a panel of mice possessing specific deletions of GHR signaling pathways. Metabolic clamps and glucose homeostasis tests were undertaken in these obese adult C57BL/6 male mice, which indicated impaired hepatic gluconeogenesis.

View Article and Find Full Text PDF

The POU domain family of transcription factors play a central role in embryogenesis and are highly expressed in neural crest cells and the developing brain. BRN2 is a class III POU domain protein that is a key mediator of neuroendocrine and melanocytic development and differentiation. While BRN2 is a central regulator in numerous developmental programs, it has also emerged as a major player in the biology of tumourigenesis.

View Article and Find Full Text PDF

A SNP within intron4 of the interferon regulatory factor4 (IRF4) gene, rs12203592*C/T, has been independently associated with pigmentation and age-specific effects on naevus count in European-derived populations. We have characterized the cis-regulatory activity of this intronic region and using human foreskin-derived melanoblast strains, we have explored the correlation between IRF4 rs12203592 homozygous C/C and T/T genotypes with TYR enzyme activity, supporting its association with pigmentation traits. Further, higher IRF4 protein levels directed by the rs12203592*C allele were associated with increased basal proliferation but decreased cell viability following UVR, an etiological factor in melanoma development.

View Article and Find Full Text PDF

Exposure of melanocytes to ultraviolet radiation (UVR) induces the formation of UV lesions that can produce deleterious effects in genomic DNA. Encounters of replication forks with unrepaired UV lesions can lead to several complex phenomena, such as the formation of DNA double-strand breaks (DSBs). The NR4A family of nuclear receptors are transcription factors that have been associated with mediating DNA repair functions downstream of the MC1R signaling pathway in melanocytes.

View Article and Find Full Text PDF

While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively.

View Article and Find Full Text PDF

Tumour heterogeneity poses a distinct obstacle to therapeutic intervention. While the initiation of tumours across various physiological systems is frequently associated with signature mutations in genes that drive proliferation and bypass senescence, increasing evidence suggests that tumour progression and clonal diversity is driven at an epigenetic level. The tumour microenvironment plays a key role in driving diversity as cells adapt to demands imposed during tumour growth, and is thought to drive certain subpopulations back to a stem cell-like state.

View Article and Find Full Text PDF

The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality.

View Article and Find Full Text PDF

Protein screening/detection is an essential tool in many laboratories. Owing to the relatively large time investments that are required by standard protocols, the development of methods with higher throughput while maintaining an at least comparable signal-to-noise ratio is highly beneficial in many research areas. This chapter describes how cold microwave technology can be used to enhance the rate of molecular interactions and provides protocols for dot blots, Western blots, and ELISA procedures permitting a completion of all incubation steps (blocking and antibody steps) within 24-45 min.

View Article and Find Full Text PDF

Nuclear factor one X (NFIX) has been shown to play a pivotal role during the development of many regions of the brain, including the neocortex, the hippocampus and the cerebellum. Mechanistically, NFIX has been shown to promote neural stem cell differentiation through the activation of astrocyte-specific genes and via the repression of genes central to progenitor cell self-renewal. Interestingly, mice lacking Nfix also exhibit other phenotypes with respect to development of the central nervous system, and whose underlying causes have yet to be determined.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) methylate arginine residues on histones and target transcription factors that play critical roles in many cellular processes, including gene transcription, mRNA splicing, proliferation, and differentiation. Recent studies have linked PRMT-dependent epigenetic marks and modifications to carcinogenesis and metastasis in cancer. However, the role of PRMT2-dependent signaling in breast cancer remains obscure.

View Article and Find Full Text PDF

Ultraviolet radiation (UVR) is the most common mutagen that melanocytes are exposed to. UVR causes a diverse range of DNA photolesions contributing to genome instability and promotes melanoma and non-melanoma development. Melanocytes are pigment-producing cells that synthesise the photoprotective melanins when the melanocortin-1 receptor (MC1R) is activated.

View Article and Find Full Text PDF

Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process.

View Article and Find Full Text PDF

Sequence polymorphisms linked to human diseases and phenotypes in genome-wide association studies often affect noncoding regions. A SNP within an intron of the gene encoding Interferon Regulatory Factor 4 (IRF4), a transcription factor with no known role in melanocyte biology, is strongly associated with sensitivity of skin to sun exposure, freckles, blue eyes, and brown hair color. Here, we demonstrate that this SNP lies within an enhancer of IRF4 transcription in melanocytes.

View Article and Find Full Text PDF

Ultraviolet radiation (UVR) is one of the most common mutagens encountered by humans and induces the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproduct (6-4PP) lesions in the genomic DNA. To prevent the accumulation of deleterious mutations these lesions must be efficiently repaired, primarily by nucleotide excision repair. We have previously demonstrated that the NR4A family of nuclear receptors are crucial mediators of the DNA repair function of the MC1R signalling pathway in melanocytes.

View Article and Find Full Text PDF

The transcription factor nuclear factor one X (NFIX) plays a central role during the development of the neocortex and hippocampus, through the activation of astrocyte-specific gene expression and the repression of progenitor-specific pathways. However, our understanding of transcriptional targets of NFIX during cortical development remains limited. Here, we identify the transcription factor Bobby sox (Bbx) as a target for NFI-mediated transcriptional control.

View Article and Find Full Text PDF

Replication of chloroplast in plant cells is an essential process that requires co-assembly of the tubulin-like plastid division proteins FtsZ1 and FtsZ2 at mid-chloroplast to form a ring structure called the Z-ring. The Z-ring is stabilized via its interaction with the transmembrane protein ARC6 on the inner envelope membrane of chloroplasts. Plants lacking ARC6 are defective in plastid division and contain only one or two enlarged chloroplasts per cell with abnormal localization of FtsZ: instead of a single Z-ring, many short FtsZ filaments are distributed throughout the chloroplast.

View Article and Find Full Text PDF

Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited.

View Article and Find Full Text PDF

FtsZ was identified in bacteria as the first protein to localize mid-cell prior to division and homologs have been found in many plant species. Bacterial studies demonstrated that FtsZ forms a ring structure that is dynamically exchanged with a soluble pool of FtsZ. Our previous work established that Arabidopsis FtsZ1 and FtsZ2-1 are capable of in vitro self-assembly into two distinct filament types, termed type-I and type-II and noted the presence of filament precursor molecules which prompted this investigation.

View Article and Find Full Text PDF

Activating mutations in the MAPK pathway effectors, NRAS or BRAF, are detected in over 70% of melanomas. Accordingly, the identification of downstream targets of constitutive MAPK signalling in melanoma represents a major goal in understanding the genesis of this disease. We report here the regulation of members of the NR4A family of nuclear receptors by the BRAF-MEK-ERK cascade in melanoma cells.

View Article and Find Full Text PDF

Rab GTPases including Rab27a, Rab38 and Rab32 function in melanosome maturation or trafficking in melanocytes. A screen to identify additional Rabs involved in these processes revealed the localization of GFP-Rab17 on recycling endosomes (REs) and melanosomes in melanocytic cells. Rab17 mRNA expression is regulated by microphthalmia transcription factor (MITF), a characteristic of known pigmentation genes.

View Article and Find Full Text PDF

The balance between self-renewal and differentiation of neural progenitor cells is an absolute requirement for the correct formation of the nervous system. Much is known about both the pathways involved in progenitor cell self-renewal, such as Notch signaling, and the expression of genes that initiate progenitor differentiation. However, whether these fundamental processes are mechanistically linked, and specifically how repression of progenitor self-renewal pathways occurs, is poorly understood.

View Article and Find Full Text PDF

Refining the position of loci on chromosomes 7 and 9 previously linked with generalized vitiligo or vitiligo-associated autoimmune diseases presenting in families has been performed by high-density single-nucleotide polymorphism (SNP) genotyping. Investigation of the genetic interaction among these loci (and with a previously identified susceptibility gene, NLRP1, on chromosome 17) as risk factors for vitiligo demonstrates the complex nature of this disease.

View Article and Find Full Text PDF

Plants and algae contain the FtsZ1 and FtsZ2 protein families that perform specific, non-redundant functions in plastid division. In vitro studies of chloroplast division have been hampered by the lack of a suitable expression system. Here we report the expression and purification of FtsZ1-1 and FtsZ2-1 from Arabidopsis thaliana using a eukaryotic host.

View Article and Find Full Text PDF