3 results match your criteria: "Pfizer Discovery Technology Center[Affiliation]"

Protein interfaces are thought to be distinguishable from the rest of the protein surface by their greater degree of residue conservation. We test the validity of this approach on an expanded set of 64 protein-protein interfaces using conservation scores derived from two multiple sequence alignment types, one of close homologs/orthologs and one of diverse homologs/paralogs. Overall, we find that the interface is slightly more conserved than the rest of the protein surface when using either alignment type, with alignments of diverse homologs showing marginally better discrimination.

View Article and Find Full Text PDF

An approach to discover sequence patterns characteristic of ligand classes is described and applied to aminergic G protein-coupled receptors (GPCRs). Putative ligand-binding residue positions were inferred from considering three lines of evidence: conservation in the subfamily absent or underrepresented in the superfamily, any available mutation data, and the physicochemical properties of the ligand. For aminergic GPCRs, the motif is composed of a conserved aspartic acid in the third transmembrane (TM) domain (rhodopsin position 117) and a conserved tryptophan in the seventh TM domain (rhodopsin position 293); the roles of each are readily justified by molecular modeling of ligand-receptor interactions.

View Article and Find Full Text PDF

Summary: The Pfaat protein family alignment annotation tool is a Java-based multiple sequence alignment editor and viewer designed for protein family analysis. The application merges display features such as dendrograms, secondary and tertiary protein structure with SRS retrieval, subgroup comparison, and extensive user-annotation capabilities.

Availability: The program and source code are freely available from the authors under the GNU General Public License at http://www.

View Article and Find Full Text PDF