2,296 results match your criteria: "NASA Ames Research Center[Affiliation]"

Phonon screening and dissociation of excitons at finite temperatures from first principles.

Proc Natl Acad Sci U S A

July 2024

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

The properties of excitons, or correlated electron-hole pairs, are of paramount importance to optoelectronic applications of materials. A central component of exciton physics is the electron-hole interaction, which is commonly treated as screened solely by electrons within a material. However, nuclear motion can screen this Coulomb interaction as well, with several recent studies developing model approaches for approximating the phonon screening of excitonic properties.

View Article and Find Full Text PDF
Article Synopsis
  • HD 189733b is a key exoplanet for studying atmospheres, providing insights into composition, chemistry, and atmospheric dynamics.
  • Previous studies identified molecules like HO and CO in its atmosphere, but some findings about methane have been disputed.
  • Recent observations detect HO, CO, and HS, leading to an inferred atmosphere metallicity three to five times that of its star, suggesting formation from water-rich icy planetesimals.
View Article and Find Full Text PDF

Influence of Electronic Correlations on Electron-Phonon Interactions of Molecular Systems with the and Coupled Cluster Methods.

J Chem Theory Comput

July 2024

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Electron-phonon interactions are of great importance to a variety of physical phenomena, and their accurate description is an important goal for first-principles calculations. Isolated examples of materials and molecular systems have emerged where electron-phonon coupling is enhanced over density functional theory (DFT) when using the Green's-function-based method, which provides a more accurate description of electronic correlations. It is, however, unclear how general this enhancement is and how employing high-end quantum chemistry methods, which further improve the description of electronic correlations, might further alter electron-phonon interactions over or DFT.

View Article and Find Full Text PDF

The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency ice-penetrating radar (9 and 60 MHz) onboard the Europa Clipper mission. REASON is designed to probe Europa from exosphere to subsurface ocean, contributing the third dimension to observations of this enigmatic world. The hypotheses REASON will test are that (1) the ice shell of Europa hosts liquid water, (2) the ice shell overlies an ocean and is subject to tidal flexing, and (3) the exosphere, near-surface, ice shell, and ocean participate in material exchange essential to the habitability of this moon.

View Article and Find Full Text PDF

Study Objectives: We previously reported that during a 45-day simulated space mission, a dynamic lighting schedule (DLS) improved circadian phase alignment and performance assessed once on selected days. This study aimed to evaluate how DLS affected performance on a 5-minute psychomotor vigilance task (PVT) administered multiple times per day on selected days.

Methods: Sixteen crewmembers (37.

View Article and Find Full Text PDF

In this Technical Advance, we describe a novel method to improve ecological interpretation of remotely sensed vegetation greenness measurements that involved sampling 24,395 Landsat pixels (30 m) across 639 km of Alaska's central Brooks Range. The method goes well beyond the spatial scale of traditional plot-based sampling and thereby more thoroughly relates ground-based observations to satellite measurements. Our example dataset illustrates that, along the boreal-Arctic boundary, vegetation with the greatest Landsat Normalized Difference Vegetation Index (NDVI) is taller than 1 m, woody, and deciduous; whereas vegetation with lower NDVI tends to be shorter, evergreen, or non-woody.

View Article and Find Full Text PDF
Article Synopsis
  • Spaceflight presents unique health risks for astronauts, particularly regarding skin health, which are not yet fully understood.
  • A comprehensive analysis using various biological datasets revealed significant changes in skin-related biological processes during spaceflight, including DNA damage and mitochondrial issues.
  • The study's results emphasize the potential for developing strategies to reduce skin damage from space travel and highlight the body's ability to adapt back to Earth's conditions after missions.
View Article and Find Full Text PDF

Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans.

View Article and Find Full Text PDF

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution human microbiome response to three days in orbit for four individuals.

View Article and Find Full Text PDF

Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth.

View Article and Find Full Text PDF

It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a special mix of tiny molecules called microRNAs that can help understand and fix damage caused by radiation in space.
  • They did experiments to see how a treatment using three different microRNAs could help protect cells from this damage by reducing inflammation and improving cell functions.
  • The results from astronauts in different space missions showed that this treatment might help astronauts stay healthier during long space trips.
View Article and Find Full Text PDF

Spaceflight and terrestrial spaceflight analogs can alter immune phenotypes. Macrophages are important immune cells that bridge the innate and adaptive immune systems and participate in immunoregulatory processes of homeostasis. Furthermore, macrophages are critically involved in initiating immunity, defending against injury and infection, and are also involved in immune resolution and wound healing.

View Article and Find Full Text PDF
Article Synopsis
  • Spaceflight triggers an immune response in astronauts, which was analyzed during the SpaceX Inspiration4 mission using various data types, including single-cell and biochemical analysis.
  • Researchers identified a "spaceflight signature" in gene expression linked to processes like oxidative phosphorylation, immune function, and inflammation, found across multiple datasets.
  • Key findings include up-regulation of specific immune markers in T cells, long-term suppression of certain MHC class I genes, and changes in infection-related immune pathways due to shifts in the microbiome.
View Article and Find Full Text PDF

Future multi-year crewed planetary missions will motivate advances in aerospace nutrition and telehealth. On Earth, the Human Cell Atlas project aims to spatially map all cell types in the human body. Here, we propose that a parallel Human Cell Space Atlas could serve as an openly available, global resource for space life science research.

View Article and Find Full Text PDF

Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight.

Nat Commun

June 2024

Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature.

View Article and Find Full Text PDF

Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station.

View Article and Find Full Text PDF
Article Synopsis
  • Missions into Deep Space this decade are concerning due to potential health risks from microgravity and galactic cosmic radiation, especially for kidneys.
  • Researchers used various biological and clinical analyses on samples from spaceflight-exposed mice, humans, and simulated environments.
  • Key findings reveal that spaceflight causes kidney-related issues like increased risk of kidney stones, changes in nephron structure, and damage from radiation exposure.
View Article and Find Full Text PDF

Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures.

View Article and Find Full Text PDF

Mounting ambitions and capabilities for public and private, non-government sector crewed space exploration bring with them an increasingly diverse set of space travelers, raising new and nontrivial ethical, legal, and medical policy and practice concerns which are still relatively underexplored. In this piece, we lay out several pressing issues related to ethical considerations for selecting space travelers and conducting human subject research on them, especially in the context of non-governmental and commercial/private space operations.

View Article and Find Full Text PDF

As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight.

View Article and Find Full Text PDF

The Space Omics and Medical Atlas (SOMA) and international astronaut biobank.

Nature

August 2024

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study, JAXA CFE study, SpaceX Inspiration4 crew, Axiom and Polaris.

View Article and Find Full Text PDF

A second space age spanning omics, platforms and medicine across orbits.

Nature

August 2024

Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.

The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews.

View Article and Find Full Text PDF

Molecular and physiological changes in the SpaceX Inspiration4 civilian crew.

Nature

August 2024

Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.

Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study, but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight, but almost all of which did not differ from baseline (pre-flight) after return to Earth.

View Article and Find Full Text PDF