16 results match your criteria: "Center for Neural and Emergent Systems[Affiliation]"

Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware.

Front Neurosci

December 2015

Microelectronics Laboratory, HRL Laboratories LLC Malibu, CA, USA.

Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems.

View Article and Find Full Text PDF

People generally fail to produce random sequences by overusing alternating patterns and avoiding repeating ones-the gambler's fallacy bias. We can explain the neural basis of this bias in terms of a biologically motivated neural model that learns from errors in predicting what will happen next. Through mere exposure to random sequences over time, the model naturally develops a representation that is biased toward alternation, because of its sensitivity to some surprisingly rich statistical structure that emerges in these random sequences.

View Article and Find Full Text PDF

Synaptic plasticity enables adaptive self-tuning critical networks.

PLoS Comput Biol

January 2015

Center for Neural and Emergent Systems, Information and System Sciences Lab, HRL Laboratories LLC, Malibu, California, United States of America.

During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches.

View Article and Find Full Text PDF

A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times.

View Article and Find Full Text PDF

Short-term plasticity (STP) is a phenomenon that widely occurs in the neocortex with implications for learning and memory. Based on a widely used STP model, we develop an analytical characterization of the STP parameter space to determine the nature of each synapse (facilitating, depressing, or both) in a spiking neural network based on presynaptic firing rate and the corresponding STP parameters. We demonstrate consistency with previous work by leveraging the power of our characterization to replicate the functional volumes that are integral for the previous network stabilization results.

View Article and Find Full Text PDF

We present new findings that distinguish drift diffusion models (DDMs) from the linear ballistic accumulator (LBA) model as descriptions of human behavior in a two-alternative forced-choice reward maximization (Rmax) task. Previous comparisons have not considered Rmax tasks, and differences identified between the models' predictions have centered on practice effects. Unlike the parameter-free optimal performance curves of the pure DDM, the extended DDM and LBA predict families of curves depending on their additional parameters, and those of the LBA show significant differences from the DDMs, especially for poorly discriminable stimuli that incur high error rates.

View Article and Find Full Text PDF

How does the modular organization of entorhinal grid cells develop?

Front Hum Neurosci

June 2014

Department of Mathematics, Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA.

The entorhinal-hippocampal system plays a crucial role in spatial cognition and navigation. Since the discovery of grid cells in layer II of medial entorhinal cortex (MEC), several types of models have been proposed to explain their development and operation; namely, continuous attractor network models, oscillatory interference models, and self-organizing map (SOM) models. Recent experiments revealing the in vivo intracellular signatures of grid cells (Domnisoru et al.

View Article and Find Full Text PDF

Analyzing large-scale spiking neural data with HRLAnalysis(™).

Front Neuroinform

March 2014

Center for Neural and Emergent Systems, Information and Systems Sciences Laboratory, HRL Laboratories LLC. Malibu, CA, USA.

The additional capabilities provided by high-performance neural simulation environments and modern computing hardware has allowed for the modeling of increasingly larger spiking neural networks. This is important for exploring more anatomically detailed networks but the corresponding accumulation in data can make analyzing the results of these simulations difficult. This is further compounded by the fact that many existing analysis packages were not developed with large spiking data sets in mind.

View Article and Find Full Text PDF

Oscillations in the coordinated firing of brain neurons have been proposed to play important roles in perception, cognition, attention, learning, navigation, and sensory-motor control. The network theta rhythm has been associated with properties of spatial navigation, as has the firing of entorhinal grid cells and hippocampal place cells. Two recent studies reduced the theta rhythm by inactivating the medial septum (MS) and demonstrated a correlated reduction in the characteristic hexagonal spatial firing patterns of grid cells.

View Article and Find Full Text PDF

Using a hybrid neuron in physiologically inspired models of the basal ganglia.

Front Comput Neurosci

July 2013

Center for Neural and Emergent Systems, Information and System Sciences Laboratory, HRL Laboratories LLC. Malibu, CA, USA ; Department of Electrical and Biomedical Engineering, The University of Nevada Reno, NV, USA ; Department of Computer Science and Engineering, The University of Nevada Reno, NV,

Our current understanding of the basal ganglia (BG) has facilitated the creation of computational models that have contributed novel theories, explored new functional anatomy and demonstrated results complementing physiological experiments. However, the utility of these models extends beyond these applications. Particularly in neuromorphic engineering, where the basal ganglia's role in computation is important for applications such as power efficient autonomous agents and model-based control strategies.

View Article and Find Full Text PDF

Learning and prospective recall of noisy spike pattern episodes.

Front Comput Neurosci

June 2013

Information and System Sciences Lab, Center for Neural and Emergent Systems, HRL Laboratories LLC Malibu, CA, USA.

Spike patterns in vivo are often incomplete or corrupted with noise that makes inputs to neuronal networks appear to vary although they may, in fact, be samples of a single underlying pattern or repeated presentation. Here we present a recurrent spiking neural network (SNN) model that learns noisy pattern sequences through the use of homeostasis and spike-timing dependent plasticity (STDP). We find that the changes in the synaptic weight vector during learning of patterns of random ensembles are approximately orthogonal in a reduced dimension space when the patterns are constructed to minimize overlap in representations.

View Article and Find Full Text PDF

Efficiently passing messages in distributed spiking neural network simulation.

Front Comput Neurosci

June 2013

Center for Neural and Emergent Systems, Information and System Sciences Laboratory, HRL Laboratories LLC. Malibu, CA, USA ; Department of Electrical and Biomedical Engineering, The University of Nevada Reno, NV, USA ; Department of Computer Science and Engineering, The University of Nevada Reno, NV,

Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance.

View Article and Find Full Text PDF

This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1.

View Article and Find Full Text PDF

This paper describes a redundant robot arm that is capable of learning to reach for targets in space in a self-organized fashion while avoiding obstacles. Self-generated movement commands that activate correlated visual, spatial and motor information are used to learn forward and inverse kinematic control models while moving in obstacle-free space using the Direction-to-Rotation Transform (DIRECT). Unlike prior DIRECT models, the learning process in this work was realized using an online Fuzzy ARTMAP learning algorithm.

View Article and Find Full Text PDF

Neuromorphic adaptive plastic scalable electronics: analog learning systems.

IEEE Pulse

January 2012

Center for Neural and Emergent Systems, Information and System Sciences Department, HRL Laboratories, Malibu, California, USA.

Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines.

View Article and Find Full Text PDF