3,3'-Linked BINOL macrocycles: optimized synthesis of crown ethers featuring one or two BINOL units.

Beilstein J Org Chem

Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chiral macrocycles hold significant importance in various scientific fields due to their unique structural and chemical properties. By controlling their size, shape, and substituents, chiral macrocycles offer a platform for designing and synthesizing highly efficient catalysts, chemosensors, and functional materials. We have recently made strides in developing macrocyclic organocatalysts; however, their synthesis remains challenging. In this work, we aimed to discover a straightforward method for producing a diverse range of chiral macrocycles, thereby enabling further exploration in the field of interlocked and macrocyclic organocatalysts. We successfully established optimized synthetic routes for the synthesis of chiral macrocycles containing one or two stereogenic units, featuring varying ring sizes and substituents (21 examples in total).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415923PMC
http://dx.doi.org/10.3762/bjoc.21.134DOI Listing

Publication Analysis

Top Keywords

chiral macrocycles
16
macrocyclic organocatalysts
8
macrocycles
5
33'-linked binol
4
binol macrocycles
4
macrocycles optimized
4
optimized synthesis
4
synthesis crown
4
crown ethers
4
ethers featuring
4

Similar Publications

3,3'-Linked BINOL macrocycles: optimized synthesis of crown ethers featuring one or two BINOL units.

Beilstein J Org Chem

August 2025

Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany.

Chiral macrocycles hold significant importance in various scientific fields due to their unique structural and chemical properties. By controlling their size, shape, and substituents, chiral macrocycles offer a platform for designing and synthesizing highly efficient catalysts, chemosensors, and functional materials. We have recently made strides in developing macrocyclic organocatalysts; however, their synthesis remains challenging.

View Article and Find Full Text PDF

Zinc(II) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed.

View Article and Find Full Text PDF

Nifurtimox (NFX) is a chiral drug used for the treatment of Chagas Disease. Little attention has been paid to the enantioselective properties of chiral drugs used for neglected tropical diseases, highlighting the need for further studies in this area. In this work, the enantioselective properties of NFX were carefully investigated by HPLC using different chiral stationary phases (CSPs) and chromatographic modes.

View Article and Find Full Text PDF

Electrophysiological identification of 4 macrocyclic lactones as female-specific volatiles of the agarwood tree defoliator Heortia vitessoides (Lepidoptera: Crambidae).

Insect Sci

September 2025

CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.

Agarwood trees (Aquilaria spp.) are widely cultivated in tropical Asia for their valuable resin. The defoliator moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a devastating pest that significantly limits the productivity of agarwood plantations.

View Article and Find Full Text PDF

Cyclic oligomers with multiple redox centers are ideal models for intramolecular electron transfer processes, as they feature well-defined spatial geometries and degenerate energy states. The design and synthesis of such structures with strongly interacting monomers, however, remains a significant challenge. Here, we report a one-pot synthesis of an acetylene-bridged ferrocene macrocycle (9) using alkyne metathesis, with a remarkable 43% isolated yield.

View Article and Find Full Text PDF