Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A flat control law is based on the structural analysis of a controlled system, allowing optimal placement of sensors and actuators. Once designed, any desired dynamics can be imposed onto the system. When the target dynamics comes from a system structurally different from the controlled one, generalized synchronization can be achieved, provided the control gain is sufficiently large. As the gain increases, various relationships emerge between the drive and response systems, depending on differences in their dimensions and dissipation rates. The principal contribution of this work lies in the exploration of drive-response system pairs with varying dimensions (ranging from 2 to 4) and dissipation levels, including combinations of dissipative and conservative systems. We identify several types of generalized synchronization, using a classification based on the thickness of the resulting Lissajous curves and the lack of conjugacy between the first-return maps of the drive and response systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0276030 | DOI Listing |