A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bifidobacterium breve B2798 and Its Heat-Killed Cells Alleviate Inflammation in Rats with DSS Model by Modulating Gut Microbiota. | LitMetric

Bifidobacterium breve B2798 and Its Heat-Killed Cells Alleviate Inflammation in Rats with DSS Model by Modulating Gut Microbiota.

Probiotics Antimicrob Proteins

Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, National Collection of Microbial Resource for Feed (Inner Mongol

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While probiotics are widely recognized for their adjunctive benefits in ulcerative colitis treatment, the therapeutic potential of heat-killed cells remains underexplored. This study directly compared the efficacy of Bifidobacterium breve B2798 probiotics (LB group) and their heat-killed counterparts (DB group) in alleviating dextran sulfate sodium (DSS)-induced colitis in rats. Over a 21-day intervention, both treatments significantly mitigated colitis symptoms, including weight loss, colon damage, and splenomegaly, with heat-killed cells demonstrating superior histological improvement over live probiotics. Serum analysis revealed that both interventions normalized DSS-induced cytokine dysregulation, reducing pro-inflammatory markers and elevating anti-inflammatory. Although α-diversity remained stable, β-diversity analysis indicated distinct gut microbiota restructuring. Heat-killed cells uniquely enriched butyrate-producing Alistipes spp. and Parabacteroides distasonis, while probiotics upregulated Mucispirillum schaedleri and Odoribacter splanchnicus. Metabolomic profiling identified shared elevation of anti-inflammatory metabolites (linoleic acid, isorhamnetin) in both groups, yet heat-killed cells exhibited stronger modulation of metabolic pathways, including TCA cycle activation and pantothenate biosynthesis suppression. Correlation networks highlighted species-specific microbiota-metabolite-cytokine interactions, with Mucispirillum schaedleri and Barnesiella intestinihominis negatively associated with inflammatory markers (MPO, TNF-α). These findings demonstrate that while both live and heat-killed B. breve B2798 alleviate colitis, heat-killed cells exert enhanced regulatory effects on gut microbiota composition, metabolic pathways, and inflammatory responses, offering a safer alternative for inflammatory bowel disease management. Further mechanistic studies are warranted to validate these preclinical insights.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-025-10648-6DOI Listing

Publication Analysis

Top Keywords

heat-killed cells
24
breve b2798
12
gut microbiota
12
bifidobacterium breve
8
heat-killed
8
mucispirillum schaedleri
8
metabolic pathways
8
cells
6
b2798 heat-killed
4
cells alleviate
4

Similar Publications