Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease globally. Disruptions in iron metabolism and mitochondrial oxidative function may cooperatively contribute to its pathogenesis. Ferredoxin reductase (FDXR), a mitochondrial flavoprotein, plays a critical role in mitochondrial respiratory supercomplex formation and iron-sulfur cluster biosynthesis-both essential for efficient oxidative metabolism. However, its role in MASLD remains unclear. Here, we knocked down hepatic Fdxr expression in the liver of C57BL/6 mice using -acetyl galactosamine-conjugated antisense oligonucleotides. [ C ]glutamine tracer infusions revealed that FDXR deficiency disrupted mitochondrial oxidative phosphorylation. In contrast, FDXR deficiency increased hepatic iron accumulation, reactive oxygen species, and lipid peroxidation. Mechanistically, FDXR deficiency disrupted iron-sulfur cluster assembly and reduced mitochondrial proteins such as succinate dehydrogenase complex iron-sulfur subunit B (SDHB), leading to mitochondrial dysfunction and steatosis. FDXR expression was upregulated in both human and murine MASLD livers, suggesting a compensatory protective response. Furthermore, hepatic overexpression of FDXR restored mitochondrial function, enhanced oxidative capacity, and ameliorated steatosis. These findings identify FDXR as a key regulator linking iron metabolism and mitochondrial integrity in MASLD and highlight its potential as a therapeutic target to prevent disease progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408023 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-7014857/v1 | DOI Listing |