Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent advances in computer vision have enabled the development of automated animal behavior observation tools. Several software packages currently exist for concurrently tracking pose in multiple animals; however, existing tools still face challenges in maintaining animal identities across frames and can demand extensive human oversight and editing. Here we report on DIPLOMAT, a D eep learning-based, I dentity- P reserving, L abeled- O bject M ulti- A nimal T racker, which implements automated algorithms to improve identity continuity, supplemented by an efficient human interface to help eliminate remaining errors. DIPLOMAT is designed to perform multi-animal tracking by building on the per-frame pose prediction models of two state-of-the-art tools, DeepLabCut and SLEAP, applying novel methods to tolerate occlusion and preserve animal identity across frames. Notable features include leveraging model-derived positional probabilities to compute independent maximum probability traces across frames of a video, use of video-specific skeletal constraints, and implementation of an efficient user interface for resolving errors. On the MABe mouse tracking benchmark, automated tracking with DIPLOMAT reduces body identity swaps by >75%, while remaining errors are easily eradicated with manual correction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407788 | PMC |
http://dx.doi.org/10.1101/2025.08.11.669786 | DOI Listing |