98%
921
2 minutes
20
Ral GTPases have long been proposed as regulators of the metazoan Exocyst, a conserved secretory vesicle-tethering complex, but direct evidence for this role has been scarce. In contrast, the well-studied yeast Exocyst relies on multiple Rab GTPases to regulate function, but yeast do not encode Ral. Using Caenorhabditis elegans we demonstrate that endogenous RAL-1 directly engages the Exocyst through conserved binding sites in its subunits. Loss of RAL-1 disrupts dendritic arborization of PVD sensory neurons, impairs vesicle trafficking, and causes broad developmental defects, acting both cell-autonomously in neurons and non-autonomously through supporting epithelial cells. Structure-guided genome editing of RAL-1-Exocyst interfaces produced synthetic phenotypes, underscoring the physiological importance of these contacts. Taken together, our findings establish RAL-1 as a bona fide regulator of the metazoan Exocyst in vivo and suggest that Ral-Exocyst interactions operate in parallel with other secretory pathways. More broadly, this work positions C. elegans as a powerful system to dissect Ral-Exocyst mechanisms across molecular, cellular, and developmental scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407918 | PMC |
http://dx.doi.org/10.1101/2025.08.28.672893 | DOI Listing |
Ral GTPases have long been proposed as regulators of the metazoan Exocyst, a conserved secretory vesicle-tethering complex, but direct evidence for this role has been scarce. In contrast, the well-studied yeast Exocyst relies on multiple Rab GTPases to regulate function, but yeast do not encode Ral. Using Caenorhabditis elegans we demonstrate that endogenous RAL-1 directly engages the Exocyst through conserved binding sites in its subunits.
View Article and Find Full Text PDFAutophagy
December 2024
Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong Province, China.
Selective macroautophagy/autophagy in metazoans involves the conserved receptors NBR1 and SQSTM1/p62. Both autophagy receptors manage ubiquitinated cargo recognition, while SQSTM1 has an additional, distinct role of facilitating liquid-liquid phase separation (LLPS) during autophagy. Given that plants lack SQSTM1, it is postulated that plant NBR1 may combine activities of both metazoan NBR1 and SQSTM1.
View Article and Find Full Text PDFNew Phytol
October 2017
Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic.
The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.
View Article and Find Full Text PDFPLoS Pathog
January 2017
Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom.
Membrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence.
View Article and Find Full Text PDFBiol Direct
April 2013
Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic.
Unlabelled: Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants - two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms.
View Article and Find Full Text PDF