A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lung lobe segmentation: performance of open-source MOOSE, TotalSegmentator, and LungMask models compared to a local in-house model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Lung lobe segmentation is required to assess lobar function with nuclear imaging before surgical interventions. We evaluated the performance of open-source deep learning-based lung lobe segmentation tools, compared to a similar nnU-Net model trained on a smaller but more representative clinical dataset.

Materials And Methods: We collated and semi-automatically segmented an internal dataset of 164 computed tomography scans and classified them for task difficulty as easy, moderate, or hard. The performance of three open-source models-multi-organ objective segmentation (MOOSE), TotalSegmentator, and LungMask-was assessed using Dice similarity coefficient (DSC), robust Hausdorff distance (rHd95), and normalized surface distance (NSD). Additionally, we trained, validated, and tested an nnU-Net model using our local dataset and compared its performance with that of the other software on the test subset. All models were evaluated for generalizability using an external competition (LOLA11, n = 55).

Results: TotalSegmentator outperformed MOOSE in DSC and NSD across all difficulty levels (p < 0.001), but not in rHd95 (p = 1.000). MOOSE and TotalSegmentator surpassed LungMask across metrics and difficulty classes (p < 0.001). Our model exceeded all other models on the internal dataset (n = 33) in all metrics, across all difficulty classes (p < 0.001), and on the external dataset. Missing lobes were correctly identified only by our model and LungMask in 3 and 1 of 7 cases, respectively.

Conclusion: Open-source segmentation tools perform well in straightforward cases but struggle in unfamiliar, complex cases. Training on diverse, specialized datasets can improve generalizability, emphasizing representative data over sheer quantity.

Relevance Statement: Training lung lobe segmentation models on a local variety of cases improves accuracy, thus enhancing presurgical planning, ventilation-perfusion analysis, and disease localization, potentially impacting treatment decisions and patient outcomes in respiratory and thoracic care.

Key Points: Deep learning models trained on non-specialized datasets struggle with complex lung anomalies, yet their real-world limitations are insufficiently assessed. Training an identical model on a smaller yet clinically diverse and representative cohort improved performance in challenging cases. Data diversity outweighs the quantity in deep learning-based segmentation models. Accurate lung lobe segmentation may enhance presurgical assessment of lung lobar ventilation and perfusion function, optimizing clinical decision-making and patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411369PMC
http://dx.doi.org/10.1186/s41747-025-00623-9DOI Listing

Publication Analysis

Top Keywords

lung lobe
12
lobe segmentation
12
performance open-source
8
moose totalsegmentator
8
nnu-net model
8
segmentation
4
performance
4
segmentation performance
4
open-source moose
4
totalsegmentator lungmask
4

Similar Publications