A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

TDP-43-immunity-microbiota axis in amyotrophic lateral sclerosis: A potential pathogenic mechanism. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amyotrophic lateral sclerosis is a devastating neurodegenerative disease marked by progressive motor neuron degeneration. Despite extensive research, effective treatments remain elusive, underscoring the need to explore the molecular mechanisms driving disease progression. The amyotrophic lateral sclerosis complexity is further compounded by its large heterogeneity, encompassing both genetic and sporadic forms, diverse phenotypic presentations, and highly variable progression rates. A key pathological feature of amyotrophic lateral sclerosis is the aggregation of TAR DNA-binding protein 43, which contributes to cellular toxicity, neuroinflammation, and neuronal dysfunction. This review explores the complex interplay between TAR DNA-binding protein 43 pathology, immunity dysregulation, and the gut-brain axis, with a focus on the role of microbiome-derived metabolites in amyotrophic lateral sclerosis. Neuroinflammation, mediated by both innate and adaptive immunity, plays a central role in disease pathogenesis, with TAR DNA-binding protein 43 influencing immune signaling and exacerbating neurotoxicity. Additionally, disruptions in gut microbiota composition and intestinal barrier integrity, frequently observed in amyotrophic lateral sclerosis patients, suggest a potential role for the gut-brain axis in modulating neurodegenerative processes. By integrating evidence from emerging studies, our aim is to clarify how TAR DNA-binding protein 43 aggregation contributes to neuroinflammation and immune dysfunction while exploring the gut microbiota role as both a modulator and potential biomarker of disease. Understanding these interactions could pave the way for novel therapeutic strategies, including microbiome-targeted interventions such as probiotics, dietary modifications, or immune-modulating therapies. Finally, unraveling the TAR DNA-binding protein 43-immune system-microbiome axis may offer new avenues for personalized treatments aimed at mitigating neuroinflammation, slowing amyotrophic lateral sclerosis progression, and improving patient outcomes and life quality.

Download full-text PDF

Source
http://dx.doi.org/10.4103/NRR.NRR-D-25-00440DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
28
lateral sclerosis
28
tar dna-binding
20
dna-binding protein
20
gut-brain axis
8
gut microbiota
8
amyotrophic
7
lateral
7
sclerosis
7
tar
5

Similar Publications