Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Per- and polyfluoroalkyl substances (PFAS) are environmental toxicants associated with adverse neonatal outcomes. The exact mechanisms by which PFAS impairs neonatal health are undefined, but the placenta is a likely target.

Objective: We applied a systems biology approach to identify placental RNA co-expression modules (gene sets) associated with PFAS exposure and birth weight.

Methods: Placental tissue samples (n = 147) from the GLOWING study underwent RNA-sequencing, and PFAS concentrations were quantified using liquid chromatography-tandem mass spectrometry. We constructed a weighted gene co-expression network using Spearman correlations across 15,028 transcripts, identifying 20 gene modules. Linear regression models were used to examine associations between PFAS and module eigengenes, adjusting for potential confounders. Effect modification by fetal sex was also tested.

Results: One module showed a negative association with perfluorononanoic acid (PFNA; β = -0.012, q = 0.009). This association was sex-specific, with the sexes exhibiting varied PFAS associations but similar directional effects. Genes within the PFNA-associated module were involved in histone modification (q ≤ 0.05) and were enriched for targets of the Vitamin D Receptor (VDR), a transcription factor previously linked to PFAS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.122745DOI Listing

Publication Analysis

Top Keywords

pfas
8
weighted gene
8
gene co-expression
8
sex-dependent relationships
4
relationships pfas
4
pfas placental
4
placental transcriptomics
4
transcriptomics identified
4
identified weighted
4
gene
4

Similar Publications

Perfluoroalkyl substances exposure and kidney function decline in a community-based prospective cohort.

Ecotoxicol Environ Saf

September 2025

Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan; College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, Taipei 33302, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital,

Per- and polyfluoroalkyl substances (PFAS) are a large class of synthetic chemicals widely used in industrial and consumer applications, known for their environmental persistence, bioaccumulation, and potential toxicity. Mounting toxicological evidence suggests that the kidney is a primary target organ for PFAS accumulation, yet human data regarding compound-specific renal effects remain limited. In this community-based prospective cohort study, we investigated the associations between serum PFAS concentrations and renal outcomes in 257 adults, including 48 with chronic kidney disease (CKD) and 209 with normal kidney function at baseline.

View Article and Find Full Text PDF

Generalized Functional Linear Models: Efficient Modeling for High-dimensional Correlated Mixture Exposures.

Biomed Environ Sci

August 2025

Precision Key Laboratory of Public Health, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China;Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan 528300, Guangdong, China.

Objective: Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health. Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment, including high dimensionality, correlated exposure, and subtle individual effects.

Methods: We proposed a novel statistical approach, the generalized functional linear model (GFLM), to analyze the health effects of exposure mixtures.

View Article and Find Full Text PDF

Background And Objectives: Pollen-food allergy syndrome (PFAS) is a frequent comorbidity in individuals with hay fever. Identifying risk factors and allergen clusters can aid targeted interventions and management strategies. Objective: This study characterizes PFAS in patients with hay fever and identifies associated risk factors using the mobile health platform, AllerSearch.

View Article and Find Full Text PDF

Development of a certified reference material for per- and polyfluoroalkyl substances (PFAS) in textiles.

Anal Bioanal Chem

September 2025

Department of Analytical Chemistry and Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.

Per- and polyfluoroalkyl substances (PFASs) are a large group of emerging organic pollutants that contaminate the environment, food, and consumer products. Textiles and other outdoor products are a major source of PFAS exposure due to their water-repellent impregnations. Determination of PFASs in textiles is increasingly important for enhancing their contribution to the circular economy.

View Article and Find Full Text PDF

Karst water bodies are vital groundwater resources particularly vulnerable to pollution. Protecting their water quality requires documenting contaminants traditionally associated with anthropogenic activities (metals, nutrients, and fecal indicator bacteria) as well as emerging contaminants, such as antibiotic-resistant organisms (AROs) and perfluoroalkyl substances (PFAS). This study detected contaminants in karst-associated water bodies on the Yucatán Peninsula, including 10 sinkholes (cenotes) and one submarine groundwater discharge (SGD) site.

View Article and Find Full Text PDF