A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluating multi-ancestry genome-wide association methods: Statistical power, population structure, and practical implications. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasing availability of diverse biobanks has enabled multi-ancestry genome-wide association studies (GWASs) to enhance the discovery of genetic variants across traits and diseases. However, the choice of an optimal method remains debated, due to challenges in statistical power differences across ancestral groups and approaches to account for population structure. Two primary strategies exist: (1) pooled analysis, which combines individuals from all genetic backgrounds into a single dataset while adjusting for population stratification using principal components, increasing the sample size and statistical power but requiring careful control of population stratification; and (2) meta-analysis, which performs ancestry-group-specific GWASs and subsequently combines summary statistics, potentially capturing fine-scale population structure but facing limitations in handling admixed individuals. Using large-scale simulations with varying sample sizes and ancestry compositions, we compare these methods alongside real data analyses of eight continuous and five binary traits from the UK Biobank (N ≈ 324,000) and the All of Us Research Program (N ≈ 207,000). Our results demonstrate that pooled analysis generally exhibits better statistical power while effectively adjusting for population stratification. We further present a theoretical framework linking power differences to allele-frequency variations across populations. These findings, validated across both biobanks, highlight pooled analysis as a powerful and scalable strategy for multi-ancestry GWASs, improving genetic discovery while maintaining rigorous population structure control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2025.08.006DOI Listing

Publication Analysis

Top Keywords

statistical power
16
population structure
16
pooled analysis
12
population stratification
12
multi-ancestry genome-wide
8
genome-wide association
8
power differences
8
adjusting population
8
population
7
power
5

Similar Publications