Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The degree of pilling and fuzzing in textile fabrics is a crucial indicator of textile product quality. Current evaluation methods predominantly rely on subjective judgments, leading to issues such as rating errors and inefficiency. To achieve objective assessment of pilling and fuzzing grades, this study proposes a Hybrid Feature-Based Machine Vision Method for Objective Evaluation of Textile Pilling and Fuzzing. The method incorporates a Hybrid Feature-based Depthwise Separable Attention Network for Objective Evaluation of Textile Pilling and Fuzzing (HDAN-PF), which effectively extracts and fuses frequency and Space domain features. A Channel Attention mechanism enhances the model's ability to capture subtle features, while Depthwise Separable Convolutions reduce computational complexity, improving evaluation speed while maintaining high accuracy.The model size is approximately 327.37 MB with a total parameter count of 135,115,512. Experimental results demonstrate that the proposed method achieves a classification accuracy of 96.26% on diverse fabric images, showcasing robust generalization and practical utility.By leveraging this machine vision approach, the proposed method offers a transformative solution for achieving objective, consistent, and efficient assessments of pilling and fuzzing grades, advancing textile quality evaluation practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407393 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0329814 | PLOS |