Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pathological aggregation of transactive response DNA binding protein of 43 kDa (TDP-43), primarily driven by its low-complexity domain, is closely associated with various neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the therapeutic potential of preventing TDP-43 aggregation, no effective small molecule or biomacromolecule therapeutics have been successfully developed so far. Here, we introduce a protein design strategy that yields de novo designed proteins capable of stabilizing the key amyloidogenic region of TDP-43 in its native helical conformation with nanomolar binding affinity. The binding mechanism was further characterized by the NMR and mutagenesis study. More importantly, we demonstrated that our designed protein binders efficiently reduced TDP-43 amyloid aggregation both in vitro and in cells. Our work provides a strategy for designing protein stabilizer of the native conformation of pathological proteins for preventing its amyloid aggregation, shedding light on the development of potential therapeutic approaches for ALS, FTLD, and other protein aggregation-associated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2505320122DOI Listing

Publication Analysis

Top Keywords

protein binders
8
pathological aggregation
8
amyloid aggregation
8
protein
6
tdp-43
5
aggregation
5
novo design
4
design protein
4
binders stabilize
4
stabilize monomeric
4

Similar Publications

Impact of Albumin-Binding Moieties on Structure-Affinity-Pharmacokinetic Relationships of Novel FAP-Targeting Radioligands.

Mol Pharm

September 2025

Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-Ku, Kyoto 606-8501, Japan.

Fibroblast activation protein (FAP) is an attractive biomarker for tumor-targeting radioligands. While [Ga]Ga-FAPI-46 is a promising FAP-targeting radioligand for cancer diagnosis, clinical application of [Lu]Lu-FAPI-46 for targeted radionuclide therapy is limited due to its insufficient tumor retention. Albumin binder (ALB) including 4-(-iodophenyl)butyric acid is widely utilized to improve tumor accumulation of radioligands.

View Article and Find Full Text PDF

Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.

View Article and Find Full Text PDF

Aerobic glycolysis is critical for tumor development and metastasis. Regulating the activity of vital metabolic enzymes in the tumor glycolysis process, such as hexokinase 2 (HK-2), is expected for tumor treatment. However, conventional small molecule inhibitors only block the activity of proteases with consistently high doses via occupation-driven pattern, leading to off-target effects which limit their clinical application.

View Article and Find Full Text PDF

Potent and selective binders of the key proapoptotic proteins BAK and BAX have not been described. We use computational protein design to generate high affinity binders of BAK and BAX with greater than 100-fold specificity for their target. Both binders activate their targets when at low concentration, driving pore formation, but inhibit membrane permeabilization when in excess.

View Article and Find Full Text PDF

Fibroin: A Multi-Functional Bio-Derived Binder for Lithium-Sulfur Batteries.

ACS Sustain Chem Eng

September 2025

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.

Traditionally, binders such as poly-(vinylidene fluoride) (PVDF) have been used within lithium-sulfur (Li-S) batteries, but these present environmental and recyclability challenges and have little to no impact on the processes that drive degradation in the cell's chemistry. Ideally, a Li-S battery binder would contribute to the mitigation of the polysulfide shuttle effect and negate the impacts of positive electrode volume expansion while being compatible with aqueous ink preparation and low-energy, low-toxicity recycling processes. In this work, we demonstrate that fibroin, an economical and sustainable biological polymer with an abundance of functional groups, can effectively trap polysulfides while still offering the durability, cyclability, and ease of use offered by the current state-of-the-art binder (PVDF).

View Article and Find Full Text PDF