98%
921
2 minutes
20
Satellite remote sensing data is essential for large-scale, timely, and repeatable monitoring of forest species diversity. While various methods have been applied to satellite-based diversity estimation at regional scales, selecting suitable sensor and monitoring period remains challenging, especially in tropical forests. This study aims to identify the optimal time window, spatial resolution, and metrics for species diversity estimation in the Jianfengling tropical forest in southern China. We constructed stepwise linear regression models for estimating Richness, Simpson, and Shannon-Wiener indices using species diversity and heterogeneity metrics of spectra and structure. For analyzing phenology influence, we utilized six Sentinel-2 images acquired bimonthly from January to November. For evaluating scale dependency, we resampled the GF2 image to five spatial resolutions ranging from 0.8 to 10 m. The results indicated that the suitable phenological periods for species diversity estimation were at the beginning and end of the growing season, especially September performing the best for all diversity indices. Among four types of heterogeneity metrics, spectral information consistently explained most variance in species diversity indices across all periods. The optimal spatial resolution for estimating Richness and Shannon-Wiener index was 4-5 m, which corresponded to the average tree crown size. The texture features made a significant contribution compared to other metrics. Our study highlights that species diversity monitoring is highly dependent on the spatiotemporal scales of remote sensing data. It may offer practical guidance for selecting appropriate data and methods for species diversity monitoring in tropical forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399664 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1582910 | DOI Listing |
Funct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFAdv Biochem Eng Biotechnol
September 2025
Institute of Process Engineering in Life Sciences, Electrobiotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
While bioprocesses using Escherichia coli, Corynebacterium glutamicum, various species of Bacillus, lactic acid bacteria, Clostridia, the yeasts Saccharomyces cerevisiae and Pichia pastoris, fungi such as Aspergillus niger, and Chinese hamster ovary cells are well established, the high level of microbial diversity has not yet been exploited industrially. However, the use of alternative organisms has the potential to significantly expand the process window of bioprocesses. These extensions include the use of alternative substrates (e.
View Article and Find Full Text PDFMed Vet Entomol
September 2025
Centro de Bioinvestigaciones-CeBio, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CIT NOBA (CONICET-UNNOBA-UNSAdA), Pergamino, Argentina.
Fleas (Insecta: Siphonaptera) are recognised vectors of bacteria that affect human and other animal health, whose reservoirs are in the majority mammals. Among these, some species of the genera Rickettsia (Rickettsiales: Rickettsiaceae) and Bartonella (Rhizobiales: Bartonellaceae) are emerging and re-emerging throughout the world; however, their circulation across vast regions of Argentina and numerous animal species, particularly wild species remains largely unknown. The study of wild animal roadkill provides valuable insights into parasitic associations and the presence of pathogenic microorganisms, allowing the generation of a health alert in certain ecosystems.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Arthropod-borne viruses (arboviruses) pose a major threat to global public health, impacting both human and animal health. Genomic characterization is important for arboviruses because it allows for an understanding of their evolution and improves timely outbreak and epidemic response. In this study, we used high-throughput sequencing and computational analyses to characterize the genomes and evolution of 46 previously unsequenced or partially sequenced arbovirus isolates collected across 23 countries between 1954 and 1984.
View Article and Find Full Text PDFAm J Bot
September 2025
Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China.
Premise: The diversity-invasibility hypothesis suggests that native plant communities with high species diversity are more resistant to invasions by exotic species compared to those with fewer species. This resistance stems from more complete resource use and stronger biotic interactions in diverse communities, which limit opportunities for invaders to establish. However, this resistance could potentially be weakened by environmental stressors, including elevated tropospheric ozone.
View Article and Find Full Text PDF