Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The global rise of antimicrobial resistance has intensified the search for novel therapeutic agents that act through non-conventional mechanisms. Gallium-based nanoparticles (GaNPs) represent a promising yet underexplored class of metal-based antimicrobials. Owing to their unique ability to mimic iron(iii), GaNPs disrupt key bacterial metabolic processes, particularly those dependent on iron acquisition and utilization. This mini-review provides an overview of recent advances in the development and application of GaNPs for antibacterial therapy. Emphasis is placed on their mechanisms of action, spectrum of activity, and potential biomedical applications. The review also discusses emerging insights into bacterial responses to gallium, including resistance dynamics and synergy with existing antibiotics. As an innovative approach to combat multidrug-resistant pathogens, GaNPs offer a compelling alternative to traditional antimicrobials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400149 | PMC |
http://dx.doi.org/10.1039/d5ra04216j | DOI Listing |