98%
921
2 minutes
20
The host immune response to malaria is a complex interplay between the parasite, Plasmodium, and the human immune system. Upon infection, various components of the immune system, including innate and adaptive responses, are mobilized to combat the parasite. Innate immunity provides the initial defense, with cells such as macrophages, dendritic cells, and natural killer cells recognizing and responding to the parasite. Additionally, inflammatory cytokines are released to coordinate the immune response. The adaptive immune response, primarily involving T and B lymphocytes, plays a crucial role in controlling and eliminating the parasite. T cells recognize and destroy infected cells, while B cells produce antibodies that target specific antigens on the parasite's surface. These antibodies can neutralize the parasite, block its invasion of host cells, and facilitate its clearance by phagocytes. However, the development of protective immunity against malaria is complex and influenced by various factors, including parasite diversity, host genetics, and prior exposure to the parasite. While some individuals develop partial immunity over time, others remain susceptible to severe disease. Understanding the intricacies of the host immune response to malaria is essential for the development of effective vaccines and therapies to combat this global health burden.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399490 | PMC |
http://dx.doi.org/10.1007/s12639-025-01802-6 | DOI Listing |
Biomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFAnim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDFTurk J Pediatr
September 2025
Department of Pediatric Hematology and Oncology, Batman Training and Research Hospital, Batman, Türkiye.
Background: Brucellosis is a zoonotic infection transmitted to humans by ingestion of contaminated unpasteurized dairy products or via direct or indirect contact with infected animals. It is characterized by nonspecific symptoms like fever and joint pain, and laboratory findings including anemia, leukopenia, thrombocytopenia, or rarely pancytopenia. Here we report a case of brucellosis with thrombocytopenia that did not improve despite anti-brucella treatment and required intravenous immunoglobulin treatment.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFACS Synth Biol
September 2025
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation.
African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.
View Article and Find Full Text PDF