Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We consider the Gause predator-prey with general bounded or sub‑linear functional responses, - which includes those of Holling types Ⅰ-Ⅳ. - and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov-type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2025073 | DOI Listing |