Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inertial Measurement Units (IMUs) enable accurate estimation of anatomical joint angles but require a sensor-to-segment calibration. Literature has presented several algorithms that address this gap; however, adequately comparing calibration performance is not trivial. This study compares 3 calibration methods: N-pose calibration (NP), functional calibration (FC), and manual alignment (MA) to estimate 3D wrist joint angles during single-plane and multiplane tasks. Thirteen healthy participants were instrumented with IMUs and optical markers to compute the range of motion error (ε), root mean squared error, and offset between the joint angles from the optical reference and each IMU calibration (NP, FC, and MA) as dependent variables. We then performed 3-way repeated-measures analyses of variance on each dependent variable to evaluate interactions between calibrations, tasks, and joint axes. NP showed the worst root mean squared error (8.34° [7.41°]) performance in the calibration main effect (η2G = .095) and calibration × tasks interaction (η2G = .121). In an exploratory analysis, FC performed best (main effect root mean squared error = 6.52° [4.47°]) in the offset calibration × axes interaction in single-plane (η2G = .160) tasks. Therefore, we recommend FC to optimally perform wrist calibration and against NP. These findings are viable in aiding the development of portable IMU-based clinical motion-tracking devices.

Download full-text PDF

Source
http://dx.doi.org/10.1123/jab.2024-0283DOI Listing

Publication Analysis

Top Keywords

joint angles
16
root squared
12
squared error
12
calibration
10
inertial measurement
8
wrist joint
8
joint
5
effects inertial
4
measurement unit
4
unit sensor-to-segment
4

Similar Publications

Purpose: To investigate the images and treatment differences for Type IIIa atlantoaxial rotary dislocation (AARD) by comparing the imaging characteristics of patients with Type III and Type IIIa AARD.

Methods: The present study retrospectively analyzed a cohort of 35 patients who underwent posterior C1-C2 intra-articular fusion due to AARD from our hospital database. Among them, 23 patients were diagnosed with Type III AARD, while the remaining 12 patients were diagnosed with Type IIIa AARD.

View Article and Find Full Text PDF

The primary purpose of this study was to determine the preoperative predictors of gait biomechanics 6 months after unilateral total knee arthroplasty (TKA). There were 126 participants (age 64.4 ± 7.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the functional and radiological outcomes, complications and procedure survival in patients with posttraumatic tibial plateau deformities treated with unicondylar intra-articular tibial plateau osteotomy (UIATPO), comparing medial and lateral approaches.

Methods: A retrospective study was conducted on all patients with posttraumatic intra-articular tibial plateau deformities who underwent surgical correction at a single centre between 2016 and 2022, with a minimum follow-up of 24 months. Patient characteristics, radiological correction, patient-reported outcome measures (PROMs), including the Lysholm and knee injury and osteoarthritis outcome score (KOOS), and complications were recorded.

View Article and Find Full Text PDF

Purpose: The purposes of this study were threefold: (1) to evaluate the influence of femoral antecurvature on coronal alignment changes following supracondylar femoral derotational osteotomy (FDO); (2) to investigate the combined effects of derotation angle and osteotomy orientation in relation to femoral antecurvature and (3) to propose a practical strategy for minimising valgus deviation after FDO based sagittal femoral bowing.

Materials And Methods: Sixty-six cadaveric femoral computed tomography (CT) scans were analysed using three-dimensional (3D) simulation. Femurs were classified into three groups based on the degree of antecurvature using the distal diaphyseal angle (DDA).

View Article and Find Full Text PDF

Kinematic alignment is increasingly adopted in total knee arthroplasty (TKA) as a patient-specific strategy to restore native joint anatomy. However, its reliance on static radiographic measurements may not adequately reflect real-world functional biomechanics. This editorial underscores the importance of complementing static assessment with kinetic principles.

View Article and Find Full Text PDF