A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predictive modeling and cohort data analytics for student success and retention. | LitMetric

Predictive modeling and cohort data analytics for student success and retention.

Eval Program Plann

Computer Engineering and Computer Science Department, California State University, Long Beach, 90840, CA, USA. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents a data-driven analysis of academic performance, demographic disparities, and predictive modeling among more than 23,000 first-time freshmen at a US public University. We examine multiple factors influencing student outcomes, including GPA, credit accumulation, unit workload, Pell Grant eligibility, minority status, and parent education levels. Our analysis reveals several statistically significant disparities: non-minority students earn more units than minority students in their first two years, and Pell-eligible students accumulate fewer credits than their non-eligible peers. First-generation college students also exhibit lower credit accumulation compared to peers. GPA distributions show that minority students have a lower average GPA compared to non-minority students, with broader variation. Clustering analysis identifies three distinct academic engagement profiles based on GPA and unit load, highlighting heterogeneous performance patterns and the need for differentiated support. We develop and tune predictive models to forecast sophomore credit accumulation and GPA, achieving strong performance using deep learning. These models enable proactive risk identification and support strategic interventions. Our findings set the stage for actionable insights for institutional decision-makers aiming to enhance student retention, success, and academic momentum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.evalprogplan.2025.102689DOI Listing

Publication Analysis

Top Keywords

credit accumulation
12
predictive modeling
8
non-minority students
8
minority students
8
students
6
gpa
5
modeling cohort
4
cohort data
4
data analytics
4
analytics student
4

Similar Publications