Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In barley ( L.), many DNA markers have been developed for the selection of traits related to various end-use purposes of breeding. To perform rapid marker-assisted selection of many lines, we developed Kompetitive Allele-Specific PCR (KASP) markers, which can be used for effective automatic genotyping of single nucleotide polymorphisms (SNPs). The KASP primers were designed for 17 SNPs in 14 genes related to important traits. The target allele of all primers tried was identified on the basis of high FAM fluorescence in comparison with that of HEX. To evaluate the suitability of the developed markers in breeding programs, we used them to genotype 62 representative cultivars and lines. Then, using six of the developed markers, we comprehensively analyzed a total of 2,941 lines collected from eight breeding sites with a genotyping success rate of 95.1%-99.8% (mean, 98.6%). All six markers showed differences in allele percentages among breeding programs, and specific allele combinations were observed in all four barley types. Our data will be useful for predicting phenotype segregation and designing cross combinations. The developed KASP marker set can be used for high-throughput genotyping and should make breeding more efficient when combined with an accelerated generation technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395202PMC
http://dx.doi.org/10.1270/jsbbs.24052DOI Listing

Publication Analysis

Top Keywords

breeding programs
12
kasp marker
8
marker set
8
set high-throughput
8
high-throughput genotyping
8
end-use purposes
8
lines developed
8
developed markers
8
breeding
6
markers
5

Similar Publications

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

Background And Aims: Crop wild relatives (CWRs) are key resources for enhancing agricultural resilience, providing genetic traits that can improve pest resistance, abiotic stress tolerance, and nutritional composition in domesticated crops. Within the mustard family (Brassicaceae) this is especially significant in the Brassiceae tribe, which includes economically important genera for agriculture such as Brassica and Sinapis. However, while breeding programmes have historically focused on major crops within this tribe, the potential of their wild relatives, particularly for underutilised and minor crops, remains insufficiently explored.

View Article and Find Full Text PDF

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF

The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF