Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

T cell immunity depends on the precise coordination of signaling networks with actin cytoskeleton remodeling, yet the molecular regulators of these processes remain incompletely defined. Flightless-1 (FLII) is a gelsolin-family actin regulator with unique leucine-rich repeats that can couple cytoskeletal dynamics to diverse signaling pathways. Here, using conditional knockout mice, we identify essential roles for FLII in both CD8⁺ and regulatory T cells. Loss of FLII in CD8⁺ T cells caused a profound loss of naive cells from the spleen, impaired CCR7-dependent migration, and defective accumulation in the lung parenchyma during antigen-specific responses to respiratory vesicular stomatitis virus infection, despite largely preserved activation, effector differentiation, and cytotoxic function. FLII-deficient Foxp3⁺ regulatory T cells maintained normal numbers but exhibited diminished CD25 expression, defective IL-2 signaling, and failed to restrain spontaneous, tissue-specific autoimmunity. These findings identify FLII as a critical and previously unrecognized orchestrator of T cell trafficking and immune regulation, which may link chemokine receptor signaling to actin remodeling and is essential for proper T cell migration and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393330PMC
http://dx.doi.org/10.1101/2025.08.15.669900DOI Listing

Publication Analysis

Top Keywords

actin remodeling
8
flii cd8⁺
8
regulatory cells
8
loss actin
4
remodeling protein
4
protein flightless-1
4
flightless-1 impairs
4
impairs cd8
4
cd8 regulatory
4
cell
4

Similar Publications

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.

View Article and Find Full Text PDF

Differential interference with actin-binding protein function by acute cytochalasin B.

Curr Biol

September 2025

Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; Braunschweig Integrated Centre

Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking, or tissue development. Cytochalasin B (CB) and D (CD) are fungal secondary metabolites frequently used for interference with such processes. Although they are generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, precise molecular understanding of their effects in dynamic actin structures requires further study.

View Article and Find Full Text PDF

T cell activation is characterized by rapid reorganization of the actin cytoskeleton and cell spreading on the antigen presenting cell. The T cell nucleus occupies a large fraction of the cell volume, and its mechanical properties are likely to act as a key determinant of activation. However, the contribution of nuclear mechanics to T cell spreading and activation is not well understood.

View Article and Find Full Text PDF

Actin cytoskeleton alteration and cell homing/migration are crucial determinants for the success of stem cell (SC) based therapy. Photobiomodulation (PBM) is a promising non-pharmacological approach for modulating SC potency. Though ~660 nm is the most studied wavelength for the proliferation/differentiation of SCs, the migration and cytoskeleton remodeling aspects have not been investigated in detail.

View Article and Find Full Text PDF