98%
921
2 minutes
20
There is evidence for a shared genetic basis of atrial septal defects (ASDs) and atrial fibrillation (AF), but it remains unclear how genetic susceptibility leads to these distinct human atrial diseases. Here, we used directed differentiation of human induced pluripotent stem cell to ventricular or atrial cardiomyocytes (CMs) to define gene regulatory networks (GRNs) of human ventricular or atrial CM identity. In ventricular, atrial, or both types of CMs, we uncovered accessible chromatin regions, transcription factor motifs and key regulatory nodes, including the transcription factor , which is linked to ASDs and AF in humans. Complete loss resulted in a near absence of atrial CMs with a concomitant increase in abundance of other cell types. Reduced dosage of TBX5 in human atrial CMs caused cellular, electrophysiologic and molecular phenotypes consistent with features of atrial CM dysfunction. This included dose-dependent aberrant accessibility of many chromatin regions leading to perturbed TBX5-sensitive gene regulatory networks of atrial CM identity. These results suggest that genetic susceptibility to some human atrial diseases may impair developmental gene regulation for proper atrial CM identity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393441 | PMC |
http://dx.doi.org/10.1101/2025.08.16.669546 | DOI Listing |
Mol Biol Rep
September 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).
View Article and Find Full Text PDFRev Med Suisse
August 2025
Service de cardiologie, HFR Fribourg - Hôpital cantonal, 1752 Villars-sur-Glâne.
Atrial fibrillation (AF) is common in the elderly and often incidental. While anticoagulation is facilitated by risk-stratification scores, rate versus rhythm-control in the elderly and likely asymptomatic population remain challenging. We report an 80-year-old male with newly diagnosed slow AF, referred for an electrical cardioversion after amiodarone loading.
View Article and Find Full Text PDFBiomed Environ Sci
August 2025
Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Henan Provincial People's Hospital Heart Center, Zhengzhou 451464, Henan, China.
Hypertrophic cardiomyopathy (HCM) is a major contributor to cardiovascular diseases (CVD), the leading cause of death globally. HCM can precipitate heart failure (HF) by causing the cardiac tissue to weaken and stretch, thereby impairing its pumping efficiency. Moreover, HCM increases the risk of atrial fibrillation, which in turn elevates the likelihood of thrombus formation and stroke.
View Article and Find Full Text PDFActa Physiol (Oxf)
October 2025
Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
Background: The cerebral circulation is continuously challenged by intravascular micrometer-sized particles that become trapped microvascular-emboli. These particles may include micro-thrombi, stiffened erythrocytes, and leukocytes, while also fat particles, air, and microplastics may cause microvascular embolism.
Review Scope: In this narrative review, we discuss these embolization processes and their acute and chronic consequences.
Ann Noninvasive Electrocardiol
September 2025
Azrieli Faculty of Medicine Bar Ilan University, Safed, Israel.
Objective: To investigate two conditions that have been poorly investigated in the medical literature before in the context of atrial fibrillation: the coexistence and association of right or left bundle branch block and axis deviation in patients with permanent atrial fibrillation compared to the control group of healthy subjects with sinus rhythm.
Material And Methods: We conducted an analytic, retrospective observational study performed at Ziv Medical Center, Safed, Israel, collecting data from medical history records of all patients that have been diagnosed with permanent atrial fibrillation versus healthy controlled patients with normal sinus rhythm. We analyzed their ECGs in order to assess the presence of any bundle branch block and/or axis deviation.