A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

EZH2-TTP-mTORC1 Axis Drives Phenotypic Plasticity and Therapeutic Vulnerability in Lethal Prostate Cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phenotypic plasticity is a recognized mechanism of therapeutic resistance in prostate cancer (PCa), however current knowledge of driver mechanisms and therapeutic interventions are limited. Using genetically engineered mouse models (GEMMs) devoid of Pten and Rb1, we previously demonstrated the chromatin reprogramming factor enhancer of zeste homolog 2 (EZH2) as an important regulator of alternative transcription programs promoting phenotypic plasticity. Here, using a multi-omics approach we demonstrate that EZH2 regulates multilineage cell states dependent on the RNA binding protein Tristetraprolin (TTP) that mediates RNA stability and activation of translation. Combined chemical inhibition of EZH2 and PI3K/mTORC1 resulted in superior anti-tumor activity in murine and human phenotypic plastic models and was most significant when this combination was used with castration or enzalutamide. Together, these data indicate phenotypic plasticity dependence on coordination between EZH2, TTP and mTORC1 signaling that represent novel therapeutic dependencies for this lethal PCa phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393502PMC
http://dx.doi.org/10.21203/rs.3.rs-7360528/v1DOI Listing

Publication Analysis

Top Keywords

phenotypic plasticity
16
prostate cancer
8
phenotypic
5
ezh2-ttp-mtorc1 axis
4
axis drives
4
drives phenotypic
4
plasticity
4
therapeutic
4
plasticity therapeutic
4
therapeutic vulnerability
4

Similar Publications