Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Furfural (FF), an intermediate aldehyde compound, can serve as an indicator of the extent of the Maillard reaction on heat-induced food processing and storage, as well as for the aging assessment of the solid insulation of oil-immersed transformers because it is formed by the degradation of cellulosic insulation. By considering the concepts of green analytical chemistry, a new furfural-bis-(4-aminophenyl) disulfide (APDS) colorimetric chemosensory assay, based on the Stenhouse reaction between furfural and APDS, was developed for the quantification of furfural by utilizing UV spectroscopy and colorimetric analyses. A strong correlation between UV-vis absorbance and furfural concentrations was observed, which confirmed the high sensitivity (0.00024 mM furfural) of the reaction system. The color change at 0.005 mM of furfural was noted by the naked eye. This was a unique and highly selective phenomenon because only furfural shows UV absorbance and color change within 450-600 nm of UV radiation, unlike other aromatic and aliphatic aldehydes. The highly sensitive method was applied for the qualification of 0-0.01 mM (0-1 ppm) of furfural in the power transformer insulating fluid. An APDS strip formulated with polyethylene glycol was used as the chromatography paper. This study demonstrates the successful surface Stenhouse coupling between furfural and APDS, as confirmed by X-ray photoelectron spectroscopy analysis. Therefore, this liquid- and solid-based assay is a novel, green analytical method as it uses safer solid APDS instead of toxic liquid aniline that is generally used in conventional methods. In addition, the method is simpler, which makes the on-site analysis possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12392036PMC
http://dx.doi.org/10.1021/acsomega.5c00572DOI Listing

Publication Analysis

Top Keywords

furfural
10
liquid- solid-based
8
furfural power
8
power transformer
8
transformer insulating
8
insulating fluid
8
green analytical
8
furfural apds
8
color change
8
apds
5

Similar Publications

The identification of cellulose fibers from different sources remains a significant challenge across various fields due to their complex structural composition and diverse applications. In this study, pyrolysis gas chromatography/high-resolution mass spectrometry (Py-GC/HRMS) was employed to identify cellulose fibers and fabrics utilizing a relative ratio approach based on pyrolyzate yield, with levoglucosan (LG) as the primary peak, furfural (FF) and 5-methyl-2(3H)-furanone (α-AL) as reference peaks. Initially, four cellulose fibers had large discrepancies in pyrolyzate yield relative ratios when pyrolyzed at 600°C.

View Article and Find Full Text PDF

Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.

View Article and Find Full Text PDF

Alloc-protected furfuryl amino alcohols derived from furfural and ʟ- or ᴅ-valinol were subjected to Torii-type ester electrosynthesis to obtain the corresponding unsaturated esters. These served as key intermediates to prepare ()- and enantioenriched unsaturated amides by -Alloc deprotection which induced concomitant methoxymethyl group cleavage, to- rearrangement, and isomerization of the double bond. An oxazoline ring formation in the resulting unsaturated amides provided the corresponding enantioenriched vinyloxazoline.

View Article and Find Full Text PDF

Efficient Production of Mano/Xylo-Oligosaccharides with Excellent Probiotic Activity through Coupling Catalysis.

J Agric Food Chem

September 2025

Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, C

This study develops a catalytic system using pyruvic acid (PYA) and Fe to efficiently coproduce xylo-oligosaccharides (XOS) and (manno-oligosaccharides) MOS from food material ( Lam. fruit.) and its waste peel, respectively.

View Article and Find Full Text PDF

Valorizing spent lithium iron phosphate battery in biomass pyrolysis for production of valuable chemicals and mitigating pollutant emissions.

Bioresour Technol

September 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

The rapid increase of electronic waste, particularly battery waste, presents significant environmental challenges such as pollutant emissions and resource depletion, emphasizing the need for effective valorization and reuse strategies. This study introduces a novel approach for repurposing end-of-life lithium iron phosphate (LFP) batteries as catalysts in the pyrolysis of walnut shells (WS). Characterization analyses revealed that LFP provides both Lewis and Brønsted acid sites, which alter the thermal decomposition pathway of WS.

View Article and Find Full Text PDF