Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected.

Methods: This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns.

Results: Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038$\pm$0.033, cubic: 0.038$\pm$0.032), generative adversarial net (GAN) (0.049$\pm$0.041), and variational autoencoder (VAE) (0.068$\pm$0.046) in terms of $nRMSE$ ($p < 0.001$), achieving the lowest error of 0.027$\pm$0.027 averaged across all corruption ratios. For $PSNR$, the proposed approach achieves the highest mean value (35.81$\pm$ 17.95dB) compared to interpolation methods (linear: 33.89$\pm$26.85, cubic: 33.88$\pm$ 26.88dB), GAN (31.08$\pm$ 19.14dB), and VAE (26.98$\pm$ 18.94dB) ($p < 0.001$). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio.

Significance: The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2025.3604527DOI Listing

Publication Analysis

Top Keywords

interpolation methods
12
hd-semg signal
12
signal reconstruction
12
high-density surface
8
surface electromyography
8
denoising diffusion
8
diffusion probabilistic
8
probabilistic model
8
hd-semg signals
8
reconstruction approach
8

Similar Publications

Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.

Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).

View Article and Find Full Text PDF

Understanding gastric physiology in rodents is critical for advancing preclinical neurogastroenterology research. However, existing techniques are often invasive, terminal, or limited in resolution. This study aims to develop a non-invasive, standardized MRI protocol capable of capturing whole-stomach dynamics in anesthetized rats with high spatiotemporal resolution.

View Article and Find Full Text PDF

Introduction: Fluoroless mapping and ablation using a Pentaspline pulsed field ablation catheter has many advantages. This can be achieved using a "tripolar configuration," which enables high-quality electroanatomical maps, improves the ability to localize electrograms (EGMs), and minimizes the use of additional mapping catheters compared to the standard bipolar configuration. We aimed to evaluate the benefits of using a tripolar configuration in fluoroless atrial fibrillation ablation compared to the standard bipolar configuration.

View Article and Find Full Text PDF

AI Model Based on Diaphragm Ultrasound to Improve the Predictive Performance of Invasive Mechanical Ventilation Weaning: Prospective Cohort Study.

JMIR Form Res

September 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.

Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.

View Article and Find Full Text PDF

Introduction: Accurate identification of cherry maturity and precise detection of harvestable cherry contours are essential for the development of cherry-picking robots. However, occlusion, lighting variation, and blurriness in natural orchard environments present significant challenges for real-time semantic segmentation.

Methods: To address these issues, we propose a machine vision approach based on the PIDNet real-time semantic segmentation framework.

View Article and Find Full Text PDF